Three-phase network simulator for horizontal wells with complex advanced well completions

Thesis (M.Eng.)--Memorial University of Newfoundland, 2009. Engineering and Applied Science Includes bibliographical references (leaves 125-127) This study presents an integrated steady-state flow network model to predict the flow parameters in horizontal wells and the near wellbore region. The flow...

Full description

Bibliographic Details
Main Author: Liu, Jiyi, 1982-
Other Authors: Memorial University of Newfoundland. Faculty of Engineering and Applied Science
Format: Thesis
Language:English
Published: 2009
Subjects:
Online Access:http://collections.mun.ca/cdm/ref/collection/theses4/id/168384
Description
Summary:Thesis (M.Eng.)--Memorial University of Newfoundland, 2009. Engineering and Applied Science Includes bibliographical references (leaves 125-127) This study presents an integrated steady-state flow network model to predict the flow parameters in horizontal wells and the near wellbore region. The flow parameters are solved for pressure, flow rates and phase fractions. The fundamental network model is flexible and modular in order to simulate the fluid phase behaviors in various production conditions and different advanced well completions. -- Compared to an existing three phase flow model that is based on a liquid-gas formulation, the model for three individual phases proposed in this research is more proper and systematic to portray the fluid behavior during production and enhanced oil recovery processes. -- The network model is based on black oil three phase model in an isothermal environment, and the Newton-Raphson iterative technique is used to solve for the unknowns. The well completions and the near wellbore region are represented by the distribution of nodes that are interconnected by flow channels. -- By using this proposed model, the fluid phase behavior could be predicted for horizontal wells with complex completions, including the open hole, stinger completion, slotted liner, and multiple inflow control devices. -- Generally, water is the third phase flow in addition to oil and gas in the reservoir and wellbore. Therefore, in this research the three-phase flow was considered as oil-water-gas.