Hindcasting and forecasting of climatology for Gilbert Bay, Labrador : a marine protected area

Gilbert Bay is a marine protected area (MPA) on the southeastern coast of Labrador, Canada. The MPA was created to conserve a genetically distinctive population of Atlantic cod, Gadus morhua. Future climate change in the region is expected to have an impact on the coastal marine environment and loca...

Full description

Bibliographic Details
Main Author: Best, Sara J. (Sara Joy)
Format: Thesis
Language:English
Published: Memorial University of Newfoundland 2011
Subjects:
Online Access:https://research.library.mun.ca/9585/
https://research.library.mun.ca/9585/1/Best_Sara.pdf
Description
Summary:Gilbert Bay is a marine protected area (MPA) on the southeastern coast of Labrador, Canada. The MPA was created to conserve a genetically distinctive population of Atlantic cod, Gadus morhua. Future climate change in the region is expected to have an impact on the coastal marine environment and local communities in the future. This thesis presents results from a hindcast and forecasts study of physical oceanographic conditions for Gilbert Bay. -- The first section of this thesis examines the interannual variability in atmospheric and physical oceanographic characteristics of Gilbert Bay over the period 1949-2006. The seasonal and interannual variability of the near surface atmospheric parameters are described. Seawater temperature, salinity and sea-ice thickness in winter are simulated with a physical ocean model, the General Ocean Turbulence Model (GOTM). The results of the hindcast model suggest that the atmospheric interannual variability of the Gilbert Bay region is linked to the North Atlantic Oscillation (NAO). A warming trend observed in the subpolar North Atlantic was influenced by the local climate of coastal Labrador during the recent decade of 1995-2005. -- The second section of this thesis presents a model forecast of the impact of climate change on the physical conditions within Gilbert Bay over the next century. Climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment and the US Climate Change Science Program Project (US CCSP), specifically the Special Report on Emission Scenarios (SRES), were used. Atmospheric parameters and related changes in seawater temperature, salinity and sea-ice thickness in winter for three SRES are simulated with the GOTM, and are then compared to the hindcast study results. The results suggest that the water column during future winters will become warmer in the second half of the 21st century. In the summer the atmosphere will be warmer and more humid. Cloudiness and precipitation are expected to increase. This will have an impact on ...