Metabolomics Approach to Reveal the Effects of Ocean Acidification on the Toxicity of Harmful Microalgae: A Review of the Literature

Climate change has been associated with intensified harmful algal blooms (HABs). Some harmful microalgae produce toxins that accumulate in food webs, adversely affecting the environment, public health and economy. Ocean acidification (OA) is a major consequence of high anthropogenic CO2 emissions. T...

Full description

Bibliographic Details
Published in:AppliedChem
Main Authors: Tsz-Ki Victoria Tsui, Hang-Kin Kong
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:https://doi.org/10.3390/appliedchem3010012
Description
Summary:Climate change has been associated with intensified harmful algal blooms (HABs). Some harmful microalgae produce toxins that accumulate in food webs, adversely affecting the environment, public health and economy. Ocean acidification (OA) is a major consequence of high anthropogenic CO2 emissions. The carbon chemistry and pH of aquatic ecosystems have been significantly altered as a result. The impacts of climate change on the metabolisms of microalgae, especially toxin biosynthesis, remain largely unknown. This hinders the optimization of HAB mitigation for changed climate conditions. To bridge this knowledge gap, previous studies on the effects of ocean acidification on toxin biosynthesis in microalgae were reviewed. There was no solid conclusion for the toxicity change of saxitoxin-producing dinoflagellates from the genus Alexandrium after high CO2 treatment. Increased domoic acid content was observed in the diatom Pseudo-nitzschia. The brevetoxin content of Karenia brevis remained largely unchanged. The underlying regulatory mechanisms that account for the different toxicity levels observed have not been elucidated. Metabolic flux analysis is useful for investigating the carbon allocations of toxic microalgae under OA and revealing related metabolic pathways for toxin biosynthesis. Gaining knowledge of the responses of microalgae in high CO2 conditions will allow the better risk assessment of HABs in the future.