Path Analysis of Sea-Level Rise and Its Impact

Global sea-level rise has been drawing increasingly greater attention in recent years, as it directly impacts the livelihood and sustainable development of humankind. Our research focuses on identifying causal factors and pathways on sea level changes (both global and regional) and subsequently pred...

Full description

Bibliographic Details
Published in:Stats
Main Authors: Jean Chung, Guanchao Tong, Jiayou Chao, Wei Zhu
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2021
Subjects:
Gam
Online Access:https://doi.org/10.3390/stats5010002
Description
Summary:Global sea-level rise has been drawing increasingly greater attention in recent years, as it directly impacts the livelihood and sustainable development of humankind. Our research focuses on identifying causal factors and pathways on sea level changes (both global and regional) and subsequently predicting the magnitude of such changes. To this end, we have designed a novel analysis pipeline including three sequential steps: (1) a dynamic structural equation model (dSEM) to identify pathways between the global mean sea level (GMSL) and various predictors, (2) a vector autoregression model (VAR) to quantify the GMSL changes due to the significant relations identified in the first step, and (3) a generalized additive model (GAM) to model the relationship between regional sea level and GMSL. Historical records of GMSL and other variables from 1992 to 2020 were used to calibrate the analysis pipeline. Our results indicate that greenhouse gases, water, and air temperatures, change in Antarctic and Greenland Ice Sheet mass, sea ice, and historical sea level all play a significant role in future sea-level rise. The resulting 95% upper bound of the sea-level projections was combined with a threshold for extreme flooding to map out the extent of sea-level rise in coastal communities using a digital coastal tracker.