p53: From Fundamental Biology to Clinical Applications in Cancer

p53 tumour suppressor gene is our major barrier against neoplastic transformation. It is involved in many cellular functions, including cell cycle arrest, senescence, DNA repair, apoptosis, autophagy, cell metabolism, ferroptosis, immune system regulation, generation of reactive oxygen species, mito...

Full description

Bibliographic Details
Published in:Biology
Main Authors: Maurizio Capuozzo, Mariachiara Santorsola, Marco Bocchetti, Francesco Perri, Marco Cascella, Vincenza Granata, Venere Celotto, Oreste Gualillo, Alessia Maria Cossu, Guglielmo Nasti, Michele Caraglia, Alessandro Ottaiano
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2022
Subjects:
p53
Online Access:https://doi.org/10.3390/biology11091325
Description
Summary:p53 tumour suppressor gene is our major barrier against neoplastic transformation. It is involved in many cellular functions, including cell cycle arrest, senescence, DNA repair, apoptosis, autophagy, cell metabolism, ferroptosis, immune system regulation, generation of reactive oxygen species, mitochondrial function, global regulation of gene expression, miRNAs, etc. Its crucial importance is denounced by the high percentage of amino acid sequence identity between very different species (Homo sapiens, Drosophila melanogaster, Rattus norvegicus, Danio rerio, Canis lupus familiaris, Gekko japonicus). Many of its activities allowed life on Earth (e.g., repair from radiation-induced DNA damage) and directly contribute to its tumour suppressor function. In this review, we provide paramount information on p53, from its discovery, which is an interesting paradigm of science evolution, to potential clinical applications in anti-cancer treatment. The description of the fundamental biology of p53 is enriched by specific information on the structure and function of the protein as well by tumour/host evolutionistic perspectives of its role.