Summary: | Since 2003, H5N1 highly pathogenic avian influenza viruses (HPAIV) have not only caused outbreaks in poultry but were also transmitted to humans with high mortality rates. Vaccination is an efficient and economical means of increasing immunity against infections to decrease the shedding of infectious agents in immunized animals and to reduce the probability of further infections. Subunit vaccines from plants are the focus of modern vaccine developments. In this study, plant-made hemagglutinin (H5) trimers were purified from transiently transformed N. benthamiana plants. All chickens immunized with purified H5 trimers were fully protected against the severe HPAIV H5N1 challenge. We further developed a proof-of-principle approach by using disulfide bonds, homoantiparallel peptides or homodimer proteins to combine H5 trimers leading to production of H5 oligomers. Mice vaccinated with crude leaf extracts containing H5 oligomers induced neutralizing antibodies better than those induced by crude leaf extracts containing trimers. As a major result, eleven out of twelve chickens (92%) immunized with adjuvanted H5 oligomer crude extracts were protected from lethal disease while nine out of twelve chickens (75%) vaccinated with adjuvanted H5 trimer crude extracts survived. The solid protective immune response achieved by immunization with crude extracts and the stability of the oligomers form the basis for the development of inexpensive protective veterinary vaccines.
|