Petrogenesis of the Eudialyte Complex of the Lovozero Alkaline Massif (Kola Peninsula, Russia)

The Lovozero Alkaline Massif intruded through the Archaean granite-gneiss and Devonian volcaniclastic rocks about 360 million years ago, and formed a large (20 × 30 km) laccolith-type body, rhythmically layered in its lower part (the Layered Complex) and indistinctly layered and enriched in eudialyt...

Full description

Bibliographic Details
Published in:Minerals
Main Authors: Julia A. Mikhailova, Gregory Yu. Ivanyuk, Andrey O. Kalashnikov, Yakov A. Pakhomovsky, Ayya V. Bazai, Victor N. Yakovenchuk
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2019
Subjects:
Online Access:https://doi.org/10.3390/min9100581
Description
Summary:The Lovozero Alkaline Massif intruded through the Archaean granite-gneiss and Devonian volcaniclastic rocks about 360 million years ago, and formed a large (20 × 30 km) laccolith-type body, rhythmically layered in its lower part (the Layered Complex) and indistinctly layered and enriched in eudialyte-group minerals in its upper part (the Eudialyte Complex). The Eudialyte Complex is composed of two groups of rocks. Among the hypersolvus meso-melanocratic alkaline rocks (mainly malignite, as well as shonkinite, melteigite, and ijolite enriched with the eudialyte-group minerals, EGM), there are lenses of subsolvus leucocratic rocks (foyaite, fine-grained nepheline syenite, urtite with phosphorus mineralization, and primary lovozerite-group minerals). Leucocratic rocks were formed in the process of the fractional crystallization of melanocratic melt enriched in Fe, high field strength elements (HFSE), and halogens. The fractionation of the melanocratic melt proceeded in the direction of an enrichment in nepheline and a decrease in the aegirine content. A similar fractionation path occurs in the Na2O-Al2O3-Fe2O3-SiO2 system, where the melt of the “ijolite” type (approximately 50% of aegirine) evolves towards “phonolitic eutectic” (approximately 10% of aegirine). The temperature of the crystallization of subsolvus leucocratic rocks was about 550 °C. Hypersolvus meso-melanocratic rocks were formed at temperatures of 700–350 °C, with a gradual transition from an almost anhydrous HFSE-Fe-Cl/F-rich alkaline melt to a Na(Cl, F)-rich water solution. Devonian volcaniclastic rocks underwent metasomatic treatment of varying intensity and survived in the Eudialyte Complex, some remaining unchanged and some turning into nepheline syenites. In these rocks, there are signs of a gradual increase in the intensity of alkaline metasomatism, including a wide variety of zirconium phases. The relatively high fugacity of fluorine favored an early formation of zircon in apo-basalt metasomatites. The ensuing crystallization of aegirine in ...