Summary: | The Iberian region relies heavily on groundwater and is highly vulnerable to climate variability, making it crucial to understand factors influencing water availability. The aim of this research was to assess how large-scale climate patterns affect total water storage anomalies (TWSAs) in Iberia, particularly in relation to persistent droughts and floods. To address this, I analyzed TWSAs derived from a reconstructed dataset (GRACE-REC) spanning from 1980 to 2019, first at the scale of the entire Iberian Peninsula and then across its main river basins. The links between the North Atlantic Oscillation (NAO), East Atlantic (EA) and Scandinavian (SCAND) patterns, TWSAs, and hydrological extremes were quantified using wavelet and principal component analysis. The results reveal that the NAO exerts the strongest multiyear influence on TWSAs, with periodicities of approximately 10 and 6.5 years, particularly in the southern river basins (Tagus, Guadiana, and Guadalquivir). EA and SCAND have stronger influences in the northern basins (Douro, Minho, and Ebro), driving 2- to 3.5-year cycles. Coupled phases of climate patterns, such as NAO+ and EA− (or SCAND−), correspond to extreme droughts, whereas NAO− and EA+ (or SCAND+) correspond to wet conditions.
|