Influence of the Active Layer Thickness of Permafrost in Eastern Siberia on the River Discharge of Nutrients into the Arctic Ocean

Large rivers are important links between continents and oceans for material flows that have a global impact on marine biogeochemistry. Processes in the catchment areas of large rivers can affect the flow of solutes into the global ocean. The goal was to determine how the concentration of individual...

Full description

Bibliographic Details
Published in:Water
Main Authors: Olga I. Gabysheva, Viktor A. Gabyshev, Sophia Barinova
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:https://doi.org/10.3390/w14010084
Description
Summary:Large rivers are important links between continents and oceans for material flows that have a global impact on marine biogeochemistry. Processes in the catchment areas of large rivers can affect the flow of solutes into the global ocean. The goal was to determine how the concentration of individual components of nutrients in the rivers of Eastern Siberia changes depending on the active layer thickness of the permafrost (ALT) and to elucidate whether the ALT is a factor that can control nutrient flux to the Arctic Ocean. The method of canonical correlation analysis was applied to the data on the concentration of nutrients in the 12 largest rivers of Eastern Siberia and the active layer thickness in their catchments. We found that the concentration of nutrients such as ammonium ion (NH4) and total phosphorus (Ptotal) in river waters is higher in catchments with a deeper active layer. The waters of the mountain rivers in the south of the region (the Chara and Vitim rivers) are the richest in nutrients. Arctic rivers such as the Indigirka and Anabar were low in nutrients. The permeability of soils also affects the discharge of nutrients into rivers with surface runoff. We conclude that in the future, in the context of global climatic changes and the projected deepening of the active layer throughout the permafrost zone of the Northern Hemisphere, an increase in the supply of nutrients to the Arctic Ocean is possible.