Characterization of Bottled Waters by Multielemental Analysis, Stable and Radiogenic Isotopes

Multi-elemental (Ca, Mg, Na, K, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, P, Pb, Sb, Se, Tl, V, and Zn) and stable isotope (i.e., δ2H, δ18O, and δ13CDIC) analyses were performed on 13 (8 Slovenian and 5 imported) bottled mineral and spring waters from the Slovenian market. In addition, 87Sr/86...

Full description

Bibliographic Details
Published in:Water
Main Authors: Tea Zuliani, Tjaša Kanduč, Rok Novak, Polona Vreča
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:https://doi.org/10.3390/w12092454
Description
Summary:Multi-elemental (Ca, Mg, Na, K, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, P, Pb, Sb, Se, Tl, V, and Zn) and stable isotope (i.e., δ2H, δ18O, and δ13CDIC) analyses were performed on 13 (8 Slovenian and 5 imported) bottled mineral and spring waters from the Slovenian market. In addition, 87Sr/86Sr isotope ratios were determined for the first time. In all analyzed bottled waters, the majority of elements were present although in low concentrations, and according to EU legislation, all were suitable for human consumption. Also, concentrations of major elements (Ca, Mg, Na, and K) were in general agreement with the values reported on the bottle labels, and any differences were the consequence of the natural variability of the water source used for bottling. The exception was one spring water, for which the source location changed, which was confirmed by the δ2H, δ18O, and δ13CDIC data. Two mineral waters had distinctive elemental compositions due to the particular geology of their recharge areas. The δ13CDIC was also investigated to decipher the carbonate contribution in the bottled waters. The results suggest that dissolution of carbonates and non-equilibrium carbonate dissolution by carbonic acid produced from soil zone CO2 are the predominant geochemical processes influencing the δ13CDIC values of bottled water.