Effects of Wave-Mean Flow Interaction on the Multi-Time-Scale Variability of the AO Indices: A Case Study of Winters 2007/08 and 2009/10

Wave-mean flow interaction is usually regarded as accounting for the origin of the Arctic Oscillation/Northern Hemisphere Annular Mode (AO/NAM). It is inferred that the combination of the local wave-mean flow interactions at the AO/NAM’s three regional centers of action on three important time scale...

Full description

Bibliographic Details
Published in:Atmosphere
Main Authors: Sujie Liang, Yanju Liu, Yihui Ding
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2023
Subjects:
NAO
PNA
Online Access:https://doi.org/10.3390/atmos14030524
Description
Summary:Wave-mean flow interaction is usually regarded as accounting for the origin of the Arctic Oscillation/Northern Hemisphere Annular Mode (AO/NAM). It is inferred that the combination of the local wave-mean flow interactions at the AO/NAM’s three regional centers of action on three important time scales contributes to the main behavior of the AO/NAM index. To discuss the variations of the AO/NAM indices on the three prominent time scales, we take the 2007/08 and 2009/10 winters as two comparative examples to analyze the local wave-mean flow interactions at the AO/NAM’s three centers. The following three facets are identified: (1) Synoptic-scale wave breakings in the North Atlantic can explain the variances of the AO/NAM index on a time scale of 10–20 days. In the 2007/08 winter, there were both cyclonic and anticyclonic synoptic wave breakings, while in the 2009/10 winter, cyclonic synoptic wave breaking was dominant, and the flow characteristics were strikingly similar to the blocking. (2) In the 2007/08 and 2009/10 winters, the signals of the AO/NAM indices on the time scale of 30–60 days are mainly from the interactions between the upward propagating quasi-stationary waves and the polar vortex in the stratosphere. (3) This work also demonstrates that the AO/NAM is linked to the El Niño–Southern Oscillation (ENSO) by the Pacific–North American pattern (PNA) on the winter mean time scale. In the 2007/08 (2009/10) winter, La Niña (El Niño) forced the Pacific jet to shift poleward (equatorward), in favor of weakening (enhancing) the polar waveguide; thus, the polar vortex became stronger (weaker), corresponding to the positive (negative) winter mean AO/NAM index.