Comparison of Gas Emission Crater Geomorphodynamics on Yamal and Gydan Peninsulas (Russia), Based on Repeat Very-High-Resolution Stereopairs

Gas Emission Craters (GEC) represent a new phenomenon in permafrost regions discovered in the north of West Siberia. In this study we use very-high-resolution Worldview satellite stereopairs and Resurs-P images to reveal and measure the geomorphic features that preceded and followed GEC formation on...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Alexander Kizyakov, Mikhail Zimin, Anton Sonyushkin, Yury Dvornikov, Artem Khomutov, Marina Leibman
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2017
Subjects:
Online Access:https://doi.org/10.3390/rs9101023
Description
Summary:Gas Emission Craters (GEC) represent a new phenomenon in permafrost regions discovered in the north of West Siberia. In this study we use very-high-resolution Worldview satellite stereopairs and Resurs-P images to reveal and measure the geomorphic features that preceded and followed GEC formation on the Yamal and Gydan peninsulas. Analysis of DEMs allowed us to: (1) distinguish different terrain positions of the GEC, at the foot of a gentle slope (Yamal), and on an upper edge of a terrace slope; (2) notice that the formation of both Yamal and Gydan GECs were preceded by mound development; (3) measure a funnel-shaped upper part and a cylindrical lower part for each crater; (4) and measure the expansion and plan form modification of GECs. Although the general characteristics of both craters are similar, there are differences when comparing both key sites in detail. The height of the mound and diameter of the resulting GEC in Yamal exceeds that in Gydan; GEC-1 was surrounded by a well-developed parapet, while AntGEC did not show any considerable accumulative body. Thus, using very-high-resolution remote sensing data allowed us to discriminate geomorphic features and relief positions characteristic for GEC formation. GECs are a potential threat to commercial facilities in permafrost and indigenous settlements, especially because at present there is no statistically significant number of study objects to identify the local environmental conditions in which the formation of new GEC is possible.