Fine-Scale Sea Ice Structure Characterized Using Underwater Acoustic Methods

Antarctic sea ice is known to provide unique ecosystem habitat at the ice–ocean interface. Mapping sea ice characteristics—such as thickness and roughness—at high resolution from beneath the ice is difficult due to access. A Geoswath Plus phase-measuring bathymetric sonar mounted on an autonomous un...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Vanessa Lucieer, Amy Nau, Alexander Forrest, Ian Hawes
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2016
Subjects:
Online Access:https://doi.org/10.3390/rs8100821
Description
Summary:Antarctic sea ice is known to provide unique ecosystem habitat at the ice–ocean interface. Mapping sea ice characteristics—such as thickness and roughness—at high resolution from beneath the ice is difficult due to access. A Geoswath Plus phase-measuring bathymetric sonar mounted on an autonomous underwater vehicle (AUV) was employed in this study to collect data underneath the sea ice at Cape Evans in Antarctica in November 2014. This study demonstrates how acoustic data can be collected and processed to resolutions of 1 m for acoustic bathymetry and 5 cm for acoustic backscatter in this challenging environment. Different ice textures such as platelet ice, smooth ice, and sea ice morphologies, ranging in size from 1 to 50 m were characterized. The acoustic techniques developed in this work could provide a key to understanding the distribution of sea ice communities, as they are nondisruptive to the fragile ice environments and provide geolocated data over large spatial extents. These results improve our understanding of sea ice properties and the complex, highly variable ecosystem that exists at this boundary.