Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale

Satellite-based temperature measurements are an important indicator for global climate change studies over large areas. Records from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR) and (Advanced) Along Track Scanning Radiometer ((A)ATSR) are pr...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Marcel Urban, Jonas Eberle, Christian Hüttich, Christiane Schmullius, Martin Herold
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2013
Subjects:
Online Access:https://doi.org/10.3390/rs5052348
Description
Summary:Satellite-based temperature measurements are an important indicator for global climate change studies over large areas. Records from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR) and (Advanced) Along Track Scanning Radiometer ((A)ATSR) are providing long-term time series information. Assessing the quality of remote sensing-based temperature measurements provides feedback to the climate modeling community and other users by identifying agreements and discrepancies when compared to temperature records from meteorological stations. This paper presents a comparison of state-of-the-art remote sensing-based land surface temperature data with air temperature measurements from meteorological stations on a pan-arctic scale (north of 60° latitude). Within this study, we compared land surface temperature products from (A)ATSR, MODIS and AVHRR with an in situ air temperature (Tair) database provided by the National Climate Data Center (NCDC). Despite analyzing the whole acquisition time period of each land surface temperature product, we focused on the inter-annual variability comparing land surface temperature (LST) and air temperature for the overlapping time period of the remote sensing data (2000–2005). In addition, land cover information was included in the evaluation approach by using GLC2000. MODIS has been identified as having the highest agreement in comparison to air temperature records. The time series of (A)ATSR is highly variable, whereas inconsistencies in land surface temperature data from AVHRR have been found.