Thermally Stable and Reusable Ceramic Encapsulated and Cross-Linked CalB Enzyme Particles for Rapid Hydrolysis and Esterification

Candida antarctica lipase B (CalB) enzyme was encapsulated and cross-linked by silica matrix to enhance its thermal stability and reusability, and demonstrated an enzymatic ability for rapid hydrolysis and esterification. Silica encapsulated CalB particles (Si-E-CPs) and silica cross-linked CalB par...

Full description

Bibliographic Details
Published in:International Journal of Molecular Sciences
Main Authors: Min Song, Jeong-Ho Chang
Format: Text
Language:English
Published: Multidisciplinary Digital Publishing Institute 2022
Subjects:
Online Access:https://doi.org/10.3390/ijms23052459
Description
Summary:Candida antarctica lipase B (CalB) enzyme was encapsulated and cross-linked by silica matrix to enhance its thermal stability and reusability, and demonstrated an enzymatic ability for rapid hydrolysis and esterification. Silica encapsulated CalB particles (Si-E-CPs) and silica cross-linked CalB particles (Si-CL-CPs) were prepared as a function of TEOS concentration. The particle size analysis, thermal stability, catalytic activity in different pHs, and reusability of Si-E-CPs and Si-CL-CPs were demonstrated. Furthermore, the determination of the CalB enzyme in Si-E-CPs and Si-CL-CPs was achieved by Bradford assay and TGA analysis. Enzymatic hydrolysis was performed against the p-nitrophenyl butyrate and the catalytic parameters (Km, Vmax, and Kcat) were calculated by the Michaelis–Menten equation and a Lineweaver–Burk plot. Moreover, enzymatic synthesis for benzyl benzoate was demonstrated by esterification with an acyl donor of benzoic acid and two acyl donors of benzoic anhydride. Although the conversion efficiency of Si-CL-CPs was not much higher than that of native CalB, it has an efficiency of 91% compared to native CalB and is expected to be very useful because it has high thermal and pH stability and excellent reusability.