Biodiversity and ecological classification of cryptogamic soil crusts in the vicinity of Petunia Bay, Svalbard

The objective of this study was to describe various types of Arctic soil crust that were collected in the vicinity of Petunia Bay, Svalbard in the 2012 summer season. The photosynthetically active area of different soil crust samples was estimated by a chlorophyll fluorescence imaging camera. Biodiv...

Full description

Bibliographic Details
Main Authors: Pushkareva, Ekaterina, Elster, Josef
Format: Article in Journal/Newspaper
Language:English
Published: Masaryk Univerzity 2013
Subjects:
Online Access:http://journals.muni.cz/CPR/article/view/12824
Description
Summary:The objective of this study was to describe various types of Arctic soil crust that were collected in the vicinity of Petunia Bay, Svalbard in the 2012 summer season. The photosynthetically active area of different soil crust samples was estimated by a chlorophyll fluorescence imaging camera. Biodiversity of cyanobacteria and microalgae from the collected soil crusts was analyzed using a stereomicroscopy and light microscopy. In most cases, cryptogamic crusts were dominated by cyanobacteria such as Gloeocapsa sp., Nostoc sp., Microcoleus sp., Scytonema sp., and Chroococcus sp. The dominant green microalgae were Coccomyxa sp., Hormotila sp., and Trebouxia sp. which commonly occurred in a lichenised soil crust. Soil crusts that were located in conditions with high water content were dominated by Nostoc sp. Cryptogamic soil crusts from the studied area can be divided into three different types and classified: (1) black-brown soil crusts (with low diversity of cyanobacteria and microalgae), (2) brown soil crusts (with high diversity of cyanobacteria and microalgae) and (3) grey-brown soil crusts (with low diversity of cyanobacteria and algae). The occurrence of similar soil crust types were compared at different altitudes. Altitude does not affect the biodiversity of cyanobacteria and microalgae. However, cyanobacteria and microalgae abundance increases with altitude.