Collaborative Research: A Nanostructure Sensor for Measuring Dissolved Iron and Copper Concentrations in Coastal and Offshore Seawater

Iron and Copper serve as key co-constituents for numerous enzymes in a wide range of biological systems, and their elevated or impoverished levels in aqueous systems have dramatic consequences at organismal, ecosystem, and human health scales. Over the last decade these effects have increasingly bee...

Full description

Bibliographic Details
Main Authors: Wells, Mark, Tripp, Carl
Format: Text
Language:unknown
Published: DigitalCommons@UMaine 2015
Subjects:
Online Access:https://digitalcommons.library.umaine.edu/orsp_reports/426
https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=1430&context=orsp_reports
Description
Summary:Iron and Copper serve as key co-constituents for numerous enzymes in a wide range of biological systems, and their elevated or impoverished levels in aqueous systems have dramatic consequences at organismal, ecosystem, and human health scales. Over the last decade these effects have increasingly been recognized to be important in ocean systems. Identifying sites and times where these metals cause negative environmental outcomes is greatly hampered by their comparatively sparse datasets. This problem is a direct consequence of the analytical challenge of obtaining accurate Fe and Cu determinations in saline waters at very low (trace) concentrations, and the limitations of ship-dependent sampling regimes. The PI's request funding to build on research and technology advances in the Tripp, Wells and King laboratories to develop active nanostructures that can serve as platforms amenable for detection of a wide range of environmentally important dissolved metals in seawater. Preliminary work has validated a biologically-inspired sensor platform in the subarctic N. Pacific, providing the first demonstration of dissolved Fe measurements at very low (<50 pM) concentrations in oceanic waters by a solid state sensor. The proposed work will 1) optimize this prototype sensor by tuning the active nanostructures to measure dissolved Fe and Cu, and 2) develop a detection device that migrates the current ship-board method to operate on rosette profiling platforms as well as on moorings and autonomous vehicles. Broader Impacts:This project has the potential to further develop a sensor that will provide unique information about the chemical speciation of the biologically important metals Fe and Cu. The work proposed here fills an important need for high spatial and temporal resolution data of these metals identified as priority by researchers in marine chemistry and marine biogeochemistry. This interdisciplinary approach has the potential to fill an analytical void for data that continues to stymie efforts to understand how and ...