New and Export Productivity Regulation by Si and Fe in the Equatorial Pacific Ocean

To identify and quantify the principal processes that control the partitioning of carbon among oceanic reservoirs and between the ocean and atmosphere on focal and regional scales, with a view towards synthesis and prediction on a global scale, is a specific goal of the U.S. JGOFS Synthesis and Mode...

Full description

Bibliographic Details
Main Author: Chai, Fei
Format: Text
Language:unknown
Published: DigitalCommons@UMaine 2001
Subjects:
Online Access:https://digitalcommons.library.umaine.edu/orsp_reports/250
https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=1252&context=orsp_reports
Description
Summary:To identify and quantify the principal processes that control the partitioning of carbon among oceanic reservoirs and between the ocean and atmosphere on focal and regional scales, with a view towards synthesis and prediction on a global scale, is a specific goal of the U.S. JGOFS Synthesis and Modeling Project. As a contribution towards achieving this goal, Drs. Barber, Peng, Chai and Dugdale will develop an ecosystem model for the equatorial Pacific Ocean, with a focus on how silicate and iron affect new and export productivity and the partitioning of carbon between the atmosphere, surface ocean and deep ocean. The study will use an ecosystem model embedded in a state-of-the-art general circulation model for the equatorial Pacific Ocean to investigate how new and export productivity responds to changing physical and chemical forcing. The domain of the model is between 30+S and 30+N, 120+E and 70+W, with real geometry and topography, but analysis will focus on the equatorial region from 5+N to 5+S. The recent upgrade of supercomputers at North Carolina Supercomputing Center (NCSC) (CrayT90) and Arctic Region Supercomputing Center (ARSC) (Cray-YMP) and the award of several hundred hours of CPU time to Peng, Chai and Barber make it possible to embed an ecosystem model with modest complexity in a high resolution, three dimensional prognostic ocean model, and to conduct numerous experiments on the ecosystem model structure and parameters in a timely and efficient manner. Phase 1 of the project will modify an existing five-compartment ecosystem model by adding three more compartments (silicate, diatoms and mesozooplanktonic grazers) following the approach of Dugdale et al. The preliminary objective of this three-dimensional Si/N/light model is to reproduce High Nitrate-Low Silicate-Low Chlorophyll (HNLSLC) conditions. With size-dependent growth rate responses in small phytoplankton and diatoms and varying grazing vulnerability, the role of new diatom production regulating on Si and Fe can be thoroughly investigated. ...