3D modelling and sheath folding at the Falun Zn-Pb-Cu-(Au-Ag) massive sulphide deposit and implications for exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden

The Falun pyritic Zn-Pb-Cu-(Au-Ag) deposit, situated in the Palaeoproterozoic (1.9–1.8 Ga) Bergslagen lithotectonic unit in the south-western part of the Fennoscandian Shield, is one of the major base metal sulphide deposits in Sweden. Altered rocks and ore types at Falun have been metamorphosed and...

Full description

Bibliographic Details
Published in:Mineralium Deposita
Main Authors: Kampmann, Tobias Christoph, Stephens, Michael, Weihed, Pär
Format: Article in Journal/Newspaper
Language:English
Published: Luleå tekniska universitet, Geovetenskap och miljöteknik 2016
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-9197
https://doi.org/10.1007/s00126-016-0638-z
Description
Summary:The Falun pyritic Zn-Pb-Cu-(Au-Ag) deposit, situated in the Palaeoproterozoic (1.9–1.8 Ga) Bergslagen lithotectonic unit in the south-western part of the Fennoscandian Shield, is one of the major base metal sulphide deposits in Sweden. Altered rocks and ore types at Falun have been metamorphosed and deformed in a heterogeneous ductile manner, strongly modifying mineral assemblages in the original hydrothermal alteration system and the geometry of the deposit. Using a combined methodological approach, including surface mapping of lithologies and structures, drill core logging and microstructural investigation, the polyphase character (D1 and D2) of the ductile deformation is demonstrated and a 3D model for the deposit created. F2 sheath folding along axes that plunge steeply to the south-south-east, parallel to a mineral stretching lineation and the dip direction of the S2 foliation, is suggested as a key deformation mechanism forming steeply plunging, rod-shaped ore bodies. This is in contrast to previous structural models involving fold interference and, in turn, has implications for near-mine exploration, the occurrence of hanging-wall components to the ore body being questioned. Typical rock-forming minerals in the Falun alteration aureole include quartz, biotite/phlogopite, cordierite, anthophyllite and minor almandine, andalusite and chlorite, as well as dolomite, tremolite and actinolite. Where observable, the silicate minerals in the alteration rocks show growth patterns during different phases of the tectonothermal evolution, considerable static grain growth occurring between D1 and D2 and even after D2. A major high-strain zone, characterized by the mineral assemblage talc-chlorite-(quartz-biotite/phlogopite) defines a boundary between northern and southern structural domains at the deposit, and is closely spatially associated with the polymetallic massive sulphide ores. A possible role as a metal-bearing fluid conduit during ore genesis is discussed. Validerad; 2016; Nivå 2; 20150212 (tobkam) ...