Semantic Segmentation of Iron Ore Pellets with Neural Networks

This master’s thesis evaluates five existing Convolutional Neural Network (CNN) models for semantic segmentation of optical microscopy images of iron ore pellets. The models are PSPNet, FC-DenseNet, DeepLabv3+, BiSeNet and GCN. The dataset used for training and evaluation contains 180 microscopy ima...

Full description

Bibliographic Details
Main Author: Svensson, Terese
Format: Bachelor Thesis
Language:English
Published: Luleå tekniska universitet, Institutionen för system- och rymdteknik 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74352
Description
Summary:This master’s thesis evaluates five existing Convolutional Neural Network (CNN) models for semantic segmentation of optical microscopy images of iron ore pellets. The models are PSPNet, FC-DenseNet, DeepLabv3+, BiSeNet and GCN. The dataset used for training and evaluation contains 180 microscopy images of iron ore pellets collected from LKAB’s experimental blast furnace in Luleå, Sweden. This thesis also investigates the impact of the dataset size and data augmentation on performance. The best performing CNN model on the task was PSPNet, which had an average accuracy of 91.7% on the dataset. Simple data augmentation techniques, horizontal and vertical flipping, improved the models’ average accuracy performance with 3.4% on average. From the results in this thesis, it was concluded that there are benefits to using CNNs for analysis of iron ore pellets, with time-saving and improved analysis as the two notable areas.