Winter Road Maintenance Planning-Decision Support Modelling

Winter in Northern Sweden comes with very harsh and unpredictable condition associated with large amounts of snowfall covering roadways thereby affecting transportation by roads. When the road conditions i.e. the snow depth, road unevenness and friction of the road surface are accessed and found to...

Full description

Bibliographic Details
Main Author: Mbiyana, Keegan
Format: Bachelor Thesis
Language:English
Published: Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser 2018
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-70475
Description
Summary:Winter in Northern Sweden comes with very harsh and unpredictable condition associated with large amounts of snowfall covering roadways thereby affecting transportation by roads. When the road conditions i.e. the snow depth, road unevenness and friction of the road surface are accessed and found to exceed the threshold, a maintenance action must be carried out to retain the road to the required condition for the user. The aim of maintenance, in this case, is to make the road comfortable, safe and economical for the road user. Decision support system, therefore, comes in handy to facilitate on deciding what maintenance action to carry out and when the action should be carried out, where the action should be carried out and how to go about the action based on the various data and resources available. This thesis project concentrates on how to carry out a winter road maintenance after receiving an alert of an action to carry out, when to carry it out and the road network that needs to be maintained. The thesis work focusses only on two of the winter road maintenance actions namely snow ploughing of bus stops in Luleå and application of abrasives commonly referred to as sanding of bus stops. Carrying out winter road maintenance comes at a huge cost from both direct and indirect costs with the Swedish government spending about SEK 1.75 billion every year as indicated by Jana Sochor and Cecilia Yu (Sochor & Yu, 2004). This means that reduction in the maintenance cost of even 5% through optimisation of the maintenance cost would translate into a saving of about 87.5 million SEK per year and in 10 years could amount to close to 1 billion SEK. Optimization also leads to efficiency and effectiveness that could result in improved movement on the road and reduced environmental and social-economic impacts. Maintenance planning thus becomes essential for the effective and efficient execution of work and utilisation of the available scarce resource. This thesis project focusses on the use of Operations research methods to ...