Timing and Origin of Igneous Rocks in the Gällivare area, Northern Sweden

The Gällivare area is one of Europe’s top mining regions. The area is located in the northern Norrbotten ore district which hosts ore deposits such as the Malmberget underground iron ore mine, the Aitik open pit Cu-Au mine and the currently explored Nautanen Cu-Au deposit. In addition, several small...

Full description

Bibliographic Details
Main Author: Sarlus, Zimer
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Luleå tekniska universitet, Geovetenskap och miljöteknik 2018
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69186
Description
Summary:The Gällivare area is one of Europe’s top mining regions. The area is located in the northern Norrbotten ore district which hosts ore deposits such as the Malmberget underground iron ore mine, the Aitik open pit Cu-Au mine and the currently explored Nautanen Cu-Au deposit. In addition, several small, mineralized bodies are found. These deposits are hosted by volcanic and volcanosedimentary rocks intruded by intrusive rocks. Previous studies of intrusive and volcanic rocks have often been of local scale and restricted to the major deposits, or of regional scale including entire northern Norrbotten. Minor attention has been paid to rocks of the Gällivare area on a semi-regional scale, especially the intrusive rocks. Very few studies have presented radiometric data of the intrusive and volcanic rocks. In addition, the choice of radiometric method or the re-sults have been lacking confidence. A multidisciplinary approach combining structural geology, geochemistry, geochronology and geophysics is commenced to understand the geological history, crustal geometries and geological evolution of the Gällivare area. This forms basis for future exploration of ore deposits. This study presents geochemical, geochronological and Hf-isotope results with the purpose to characterize and classify major intrusive and volcanic rocks, their timing, source magmas and tectonic environment. Petrographical and geochemical investigations reveal that the intrusive rocks range in composition from ultramafic-mafic to felsic. The ultramafic-mafic rocks comprise dominantly gabbroic layered complexes with peridotitic sequences and have tholeiitic to calc-alkaline affinity. The intermediate and felsic intrusive rocks show calc-alkaline to shoshonitic affinity. Volcanic rocks of the Malmberget deposit show alkali to alkali-calcic character. The geochemical character of the intrusive and volcanic rocks favors a continental arc, transitional to extensional setting (late- to post-collisional). Radiometric in situ U-Pb zircon analyses indicate that ...