Modelling of Damage and its Use in Assessment of a Prestressed Bridge

A 55 years old and 121.5 m long ve-span prestressed bridge has been subjected toshear failure test in Kiruna, Sweden. This in-situ test is a desirable test to validate andcalibrate the existing nonlinear nite element program for predicting the shear behaviorof reinforced and prestressed concrete str...

Full description

Bibliographic Details
Main Authors: Huang, Zheng, Grip, Niklas, Sabourova, Natalia, Bagge, Niklas, Tu, Yong-Ming, Elfgren, Lennart
Format: Report
Language:English
Published: Luleå tekniska universitet, Byggkonstruktion och brand 2016
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61185
Description
Summary:A 55 years old and 121.5 m long ve-span prestressed bridge has been subjected toshear failure test in Kiruna, Sweden. This in-situ test is a desirable test to validate andcalibrate the existing nonlinear nite element program for predicting the shear behaviorof reinforced and prestressed concrete structures.Two 3D nite element (FE) models of the Kiruna Bridge are built in commercial soft-ware Abaqus, one using shell-elements and one using a combination of shell and beam ele-ments. Predictions obtained from these two models are well consistent with mode shapesand eigenfrequencies computed from acceleration measurements on the bridge before andafter loading it to failure. Shear-failure test of this bridge performed by Lulea Universityof Technology (LTU) is also simulated using the built-in concrete damage plasticity (CDP)model in Abaqus. The predicted load-displacement curve is in good agreement with themeasurement. Verication of the CDP model is conducted at element and member levelwith two dierent damage parameter evolutions. According to the verication, it indi-cates the damage parameter will aect the predicted shear behavior of reinforced concretestructures and it is not reliable to adopt the CDP model to simulate the shear behaviorof reinforced concrete structures based on the present research.A long term goal is to use use the measured mode shapes, eigenfrequencies and FEmodels for evaluating methods for damage identication. Such methods are important formaintenance of dierent structures, for extending their life span and for better knowledgeof their load carrying capacity. We describe how so-called sparse regularization niteelement method updating (FEMU) methods can be used. We then demonstrate someimportant properties of such methods with simulations on a Kirchho plate. For instance,the simulations suggest that both eigenfrequencies and mode shapes should be used forprecise localization of the damage.