Constraints from Os-isotope variations on the origin of Lena Trough abyssal peridotites and implications for the composition and evolution of the depleted upper mantle

The Lena Trough is a highly oblique, sparsely magmatic, ultra-slow spreading center located at the smallest distance between North America and Eurasia in the Arctic basin. Competing models suggest that it is either floored by oceanic mantle abyssal peridotites (APs) exposed by lithospheric necking,...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Lassiter, J. C., Byerly, B. L., Snow, J. E., Hellebrand, E.
Format: Text
Language:unknown
Published: LSU Digital Commons 2014
Subjects:
Online Access:https://digitalcommons.lsu.edu/geo_pubs/975
https://doi.org/10.1016/j.epsl.2014.05.033
Description
Summary:The Lena Trough is a highly oblique, sparsely magmatic, ultra-slow spreading center located at the smallest distance between North America and Eurasia in the Arctic basin. Competing models suggest that it is either floored by oceanic mantle abyssal peridotites (APs) exposed by lithospheric necking, or by subcontinental mantle exposed in a still juvenile rift. To distinguish between these hypotheses, we have examined mineral major and trace element and whole rock Os-isotope variations in Lena Trough peridotites. Lena Trough peridotites are predominantly LREE-depleted, similar to other AP suites, and have 187Os/188Os ranging from ~0.118 to 0.130 (Ave.=0.1244). This distribution is nearly identical to that of abyssal peridotites globally. Both the REE patterns and the Os-isotope distribution of the Lena Trough peridotites differ starkly from subcontinental mantle xenoliths sampled at Svalbard adjacent to Lena Trough. This suggests that Lena Trough is a site of oceanic spreading, although mid-ocean ridge volcanism as such has not yet begun. Highly refractory APs from several settings have Os- and Hf-isotope compositions indicating ancient (>1 Ga) melt depletion. Some researchers have proposed that at least some APs do not directly sample the convecting upper mantle source of MORB, but instead sample highly melt-depleted residues either entrained in the convecting mantle or present as a buoyant "slag" floating atop the less-depleted MORB-source mantle. However, ocean island peridotite xenoliths and APs reveal an essentially identical, non-Gaussian distribution of Os-isotopes and also span a similar range in Hf-isotopes. The similar mean and distribution of Os-isotopes between APs and ocean island xenoliths indicate that these two sample types derive from the same heterogeneous mantle reservoir. This similarity is inconsistent with the AP "slag hypothesis" due to the significantly greater depth of origin of ocean island xenoliths with respect to APs.Global correlation between peridotite fertility indices (e.g., ...