Mapping geothermal heat flux using permafrost thickness constrained by airborne electromagnetic surveys on the western coast of Ross Island, Antarctica

© 2019, © 2019 Australian Society of Exploration Geophysicists. Permafrost is ubiquitous at high latitudes, and its thickness is controlled by important local factors like geothermal flux, ground surface temperature and thermal properties of the subsurface. We use airborne transient electromagnetic...

Full description

Bibliographic Details
Published in:Exploration Geophysics
Main Authors: Foley, Neil, Tulaczyk, Slawomir, Auken, Esben, Grombacher, Denys, Mikucki, Jill, Foged, Nikolaj, Myers, Krista, Dugan, Hilary, Doran, Peter T., Virginia, Ross A.
Format: Text
Language:unknown
Published: LSU Digital Commons 2020
Subjects:
Ice
Online Access:https://digitalcommons.lsu.edu/geo_pubs/583
https://doi.org/10.1080/08123985.2019.1651618
Description
Summary:© 2019, © 2019 Australian Society of Exploration Geophysicists. Permafrost is ubiquitous at high latitudes, and its thickness is controlled by important local factors like geothermal flux, ground surface temperature and thermal properties of the subsurface. We use airborne transient electromagnetic resistivity measurements to determine permafrost thickness on the coast of Ross Island, Antarctica, which contains the active volcano Mt Erebus. Here, resistivity data clearly distinguish resistive permafrost from the electrically conductive fluid-saturated materials underlying it. For our study, we define permafrost as frozen material with a resistivity > 100 Ω·m; more conductive material contains a significant fraction of water or (more likely) brine. We observe that permafrost is very thin near the coast and thickens within several hundred metres inland to reach depths that are typically within the range of 300–400 m. We attribute the sharp near-shore increase in permafrost thickness to lateral heat conduction from the relatively warm ocean, possibly combined with seawater infiltration into the near-shore permafrost. We validate this result with a two-dimensional heat flow model and conclude that away from the thermal influence of the ocean, the local geothermal gradient and heat flux are about 45 ± 5 °C/km and 90 ± 13 mW/m2, respectively. These values are in line with published estimates in the vicinity of Mt Erebus and within the actively extending Terror Rift, but do not reflect a strong heat flow anomaly from volcanic activity of Mt Erebus. Measurements made previously in the McMurdo Dry Valleys, on the other side of McMurdo Sound, tend to be a few dozens of mW/m2 lower, likely reflecting its different tectonic setting on the uplifted rift shoulder of Transantarctic Mountains. Our study demonstrates a new approach towards constraining geothermal flux in polar regions using airborne electromagnetic (AEM) data that can be relatively efficiently collected on regional scales where ice coverage does not exceed ...