Constraints on Minute-Scale Transient Astrophysical Neutrino Sources.

High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking...

Full description

Bibliographic Details
Published in:Physical Review Letters
Main Authors: Aartsen, MG, Ackermann, M, Adams, J, Aguilar, JA, Ahlers, M, Ahrens, M, Al Samarai, I, Altmann, D, Andeen, K, Anderson, T, Ansseau, I, Anton, G, Argüelles, C, Auffenberg, J, Axani, S, Backes, P, Bagherpour, H, Bai, X, Barbano, A, Barron, JP, Barwick, SW, Baum, V, Bay, R, Beatty, JJ, Becker Tjus, J, Becker, K-H, BenZvi, S, Berley, D, Bernardini, E, Besson, DZ, Binder, G, Bindig, D, Blaufuss, E, Blot, S, Bohm, C, Börner, M, Bos, F, Böser, S, Botner, O, Bourbeau, E, Bourbeau, J, Bradascio, F, Braun, J, Brenzke, M, Bretz, H-P, Bron, S, Brostean-Kaiser, J, Burgman, A, Busse, RS, Carver, T, Cheung, E, Chirkin, D, Christov, A, Clark, K, Classen, L, Collin, GH, Conrad, JM, Coppin, P, Correa, P, Cowen, DF, Cross, R, Dave, P, Day, M, de André, JPAM, De Clercq, C, DeLaunay, JJ, Dembinski, H, Deoskar, K, De Ridder, S, Desiati, P, de Vries, KD, de Wasseige, G, de With, M, DeYoung, T, Díaz-Vélez, JC, di Lorenzo, V, Dujmovic, H, Dumm, JP, Dunkman, M, Dvorak, E, Eberhardt, B, Ehrhardt, T, Eichmann, B, Eller, P, Evans, PA, Evenson, PA, Fahey, S, Fazely, AR, Felde, J, Filimonov, K, Finley, C, Franckowiak, A, Friedman, E, Fritz, A, Gaisser, TK, Gallagher, J, Ganster, E, Gerhardt, L, Ghorbani, K, Giang, W, Glauch, T, Glüsenkamp, T, Goldschmidt, A, Gonzalez, JG, Grant, D, Griffith, Z, Haack, C, Hallgren, A, Halve, L, Halzen, F, Hanson, K, Hebecker, D, Heereman, D, Helbing, K, Hellauer, R, Hickford, S, Hignight, J, Hill, GC, Hoffman, KD, Hoffmann, R, Hoinka, T, Hokanson-Fasig, B, Hoshina, K, Huang, F, Huber, M, Hultqvist, K, Hünnefeld, M, Hussain, R, In, S, Iovine, N, Ishihara, A, Jacobi, E, Japaridze, GS, Jeong, M, Jero, K, Jones, BJP, Kalaczynski, P, Kang, W, Kappes, A, Kappesser, D, Karg, T, Karle, A, Katz, U, Kauer, M, Keivani, A, Kelley, JL, Kheirandish, A, Kim, J, Kintscher, T, Kiryluk, J, Kittler, T, Klein, SR, Koirala, R, Kolanoski, H, Köpke, L, Kopper, C, Kopper, S, Koschinsky, JP, Koskinen, DJ, Kowalski, M, Krings, K, Kroll, M, Krückl, G, Kunwar, S, Kurahashi, N, Kyriacou, A, Labare, M, Lanfranchi, JL, Larson, MJ, Lauber, F, Leonard, K, Leuermann, M, Liu, QR, Lohfink, E, Lozano Mariscal, CJ, Lu, L, Lünemann, J, Luszczak, W, Madsen, J, Maggi, G, Mahn, KBM, Makino, Y, Mancina, S, Mariş, IC, Maruyama, R, Mase, K, Maunu, R, Meagher, K, Medici, M, Meier, M, Menne, T, Merino, G, Meures, T, Miarecki, S, Micallef, J, Momenté, G, Montaruli, T, Moore, RW, Moulai, M, Nagai, R, Nahnhauer, R, Nakarmi, P, Naumann, U, Neer, G, Niederhausen, H, Nowicki, SC, Nygren, DR, Obertacke Pollmann, A, Olivas, A, O'Murchadha, A, Osborne, JP, O'Sullivan, E, Palczewski, T, Pandya, H, Pankova, DV, Peiffer, P, Pepper, JA, Pérez de Los Heros, C, Pieloth, D, Pinat, E, Pizzuto, A, Plum, M, Price, PB, Przybylski, GT, Raab, C, Rameez, M, Rauch, L, Rawlins, K, Rea, IC, Reimann, R, Relethford, B, Renzi, G, Resconi, E, Rhode, W, Richman, M, Robertson, S, Rongen, M, Rott, C, Ruhe, T, Ryckbosch, D, Rysewyk, D, Safa, I, Sanchez Herrera, SE, Sandrock, A, Sandroos, J, Santander, M, Sarkar, S, Satalecka, K, Schaufel, M, Schlunder, P, Schmidt, T, Schneider, A, Schneider, J, Schöneberg, S, Schumacher, L, Sclafani, S, Seckel, D, Seunarine, S, Soedingrekso, J, Soldin, D, Song, M, Spiczak, GM, Spiering, C, Stachurska, J, Stamatikos, M, Stanev, T, Stasik, A, Stein, R, Stettner, J, Steuer, A, Stezelberger, T, Stokstad, RG, Stößl, A, Strotjohann, NL, Stuttard, T, Sullivan, GW, Sutherland, M, Taboada, I, Tenholt, F, Ter-Antonyan, S, Terliuk, A, Tilav, S, Toale, PA, Tobin, MN, Tönnis, C, Toscano, S, Tosi, D, Tselengidou, M, Tung, CF, Turcati, A, Turley, CF, Ty, B, Unger, E, Unland Elorrieta, MA, Usner, M, Vandenbroucke, J, Van Driessche, W, van Eijk, D, van Eijndhoven, N, Vanheule, S, van Santen, J, Vraeghe, M, Walck, C, Wallace, A, Wallraff, M, Wandler, FD, Wandkowsky, N, Watson, TB, Waza, A, Weaver, C, Weiss, MJ, Wendt, C, Werthebach, J, Westerhoff, S, Whelan, BJ, Whitehorn, N, Wiebe, K, Wiebusch, CH, Wille, L, Williams, DR, Wills, L, Wolf, M, Wood, J, Wood, TR, Woolsey, E, Woschnagg, K, Wrede, G, Xu, DL, Xu, XW, Xu, Y, Yanez, JP, Yodh, G, Yoshida, S, Yuan, T
Format: Article in Journal/Newspaper
Language:English
Published: American Physical Society 2019
Subjects:
Online Access:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.051102
http://hdl.handle.net/2381/45630
https://doi.org/10.1103/PhysRevLett.122.051102
Description
Summary:High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100 s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations. Here, we calculate generic bounds on the neutrino flux of short-lived transient sources. Assuming an E^{-2.5} neutrino spectrum, we find that the neutrino flux of rare sources, like long gamma-ray bursts, is constrained to <5% of the detected astrophysical flux and the energy released in neutrinos (100 GeV to 10 PeV) by a median bright GRB-like source is <10^{52.5} erg. For a harder E^{-2.13} neutrino spectrum up to 30% of the flux could be produced by GRBs and the allowed median source energy is <10^{52} erg. A hypothetical population of transient sources has to be more common than 10^{-5} Mpc^{-3} yr^{-1} (5×10^{-8} Mpc^{-3} yr^{-1} for the E^{-2.13} spectrum) to account for the complete astrophysical neutrino flux. The authors gratefully acknowledge the support from the following agencies and institutions. USA: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), U.S. Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium: Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany: Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden: Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia: Australian Research Council; Canada: Natural Sciences and Engineering Research Council of Canada, Calcul Québec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark: Villum Fonden, Danish National Research Foundation (DNRF); New Zealand: Marsden Fund; Japan: Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea: National Research Foundation of Korea (NRF); Switzerland: Swiss National Science Foundation (SNSF). This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. Funding for the Swift project in the UK is provided by the UK Space Agency. We acknowledge the work of Andreas Homeier who contributed to the development of this analysis. Peer-reviewed Publisher Version