Cryptogamic ground covers as analogues for early terrestrial biospheres: Initiation and evolution of biologically mediated proto-soils

Modern cryptogamic ground covers (CGCs), comprising assemblages of bryophytes (hornworts, liverworts, mosses), fungi, bacteria, lichens and algae, are thought to resemble early divergent terrestrial communities. However, limited in-situ plant and other fossils in the rock record, and a lack of CGC-l...

Full description

Bibliographic Details
Main Authors: Mitchell, R., Strullu-Derrien, C., Sykes, D., Pressel, S., Duckett, J., Kenrick, P.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2021
Subjects:
Online Access:https://eprints.whiterose.ac.uk/171729/
https://eprints.whiterose.ac.uk/171729/1/gbi.12431.pdf
Description
Summary:Modern cryptogamic ground covers (CGCs), comprising assemblages of bryophytes (hornworts, liverworts, mosses), fungi, bacteria, lichens and algae, are thought to resemble early divergent terrestrial communities. However, limited in-situ plant and other fossils in the rock record, and a lack of CGC-like soils reported in the pre-Silurian sedimentological record, have hindered understanding of the structure, composition, and interactions within the earliest CGCs. A key question is how the earliest CGC-like organisms drove weathering on primordial terrestrial surfaces (regolith), leading to the early stages of soil development as proto-soils, and subsequently contributing to large-scale biogeochemical shifts in the Earth System. Here, we employed a novel qualitative, quantitative and multi-dimensional imaging approach through X-ray micro-computed tomography, scanning electron, and optical microscopy to investigate whether different combinations of modern CGC organisms from primordial-like settings in Iceland develop organism-specific soil-forming features at the macro- and micro-scales. Additionally, we analysed CGCs growing on hard rocky substrates to investigate the initiation of weathering processes non-destructively in 3D. We show that thalloid CGC organisms (liverworts, hornworts) develop thin organic layers at the surface (<1 cm) with limited subsurface structural development, whereas leafy mosses and communities of mixed-organisms form profiles that are thicker (up to ~7 cm), structurally more complex, and more organic-rich. We term these thin layers and profiles proto-soils. Component analyses from X-ray micro-computed tomography data show that thickness and structure of these proto-soils are determined by the type of colonising organism(s), suggesting that the evolution of more complex soils through the Palaeozoic may have been driven by a shift in body plan of CGC-like organisms from flattened and appressed to upright and leafy. Our results provide a framework for identifying CGC-like proto-soils in ...