Proglacial icings as indicators of glacier thermal regime : ice thickness changes and icing occurrence in Svalbard

Proglacial icings (also known as naled or aufeis) are frequently observed in the forefields of polar glaciers. Their formation has been ascribed to the refreezing of upwelling groundwater that has originated from subglacial melt, and thus the presence of icings has been used as evidence of polytherm...

Full description

Bibliographic Details
Main Authors: Mallinson, L., Swift, D.A., Sole, A.
Format: Article in Journal/Newspaper
Language:English
Published: Taylor & Francis 2019
Subjects:
Online Access:https://eprints.whiterose.ac.uk/150824/
https://eprints.whiterose.ac.uk/150824/1/Icings%20paper%20revised%2013.06.19%20clean.pdf
Description
Summary:Proglacial icings (also known as naled or aufeis) are frequently observed in the forefields of polar glaciers. Their formation has been ascribed to the refreezing of upwelling groundwater that has originated from subglacial melt, and thus the presence of icings has been used as evidence of polythermal glacier regime. We provide an updated analysis of icing occurrence in Svalbard and test the utility of icings as an indicator of thermal regime by comparing icing presence with: (1) mean glacier thickness, as a proxy for present thermal regime; and (2) evidence of past surge activity, which is an indicator of past thermal regime. A total of 279 icings were identified from TopoSvalbard imagery covering the period 2008-2012, of which 143 corresponded to icings identified by Bukowska-Jania and Szafraniec (2005) from aerial photographs from 1990. Only 46% of icings observed in 2008-2012 were found to occur at glaciers with thicknesses consistent with a polythermal regime, meaning a large proportion were associated with glaciers predicted to be of a cold or transitional thermal regime. As a result, icing presence alone may be an unsuitable indicator of glacier regime. We further found that, of the 279 glaciers with icings, 63% of cold-based glaciers and 64% of transitional glaciers were associated with evidence of surge activity. We therefore suggest that proglacial icing formation in Svalbard may reflect historical (rather than present) thermal regime, and that icings possibly originate from groundwater effusion from subglacial taliks that persist for decades following glacier thinning and associated regime change.