Distributions of aluminum, manganese, cobalt, and lead in the western South Pacific: Interplay between the South and North Pacific

Aluminum (Al), manganese (Mn), cobalt (Co), and lead (Pb) are strongly scavenged from seawater. We reported that each element is uniquely related to ocean circulation in the North Pacific (Zheng et al., 2019). Herein, we present the full-depth distributions of these elements in the western South Pac...

Full description

Bibliographic Details
Main Authors: Zheng, Linjie, Minami, Tomoharu, Takano, Shotaro, Sohrin, Yoshiki
Other Authors: 鄭, 臨潔, 南, 知晴, 高野, 祥太朗, 宗林, 由樹
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier BV 2022
Subjects:
Online Access:http://hdl.handle.net/2433/282033
Description
Summary:Aluminum (Al), manganese (Mn), cobalt (Co), and lead (Pb) are strongly scavenged from seawater. We reported that each element is uniquely related to ocean circulation in the North Pacific (Zheng et al., 2019). Herein, we present the full-depth distributions of these elements in the western South Pacific, which include meridional sections along 170°W (GEOTRACES GP19). We determined dissolved (d) and total dissolvable (td) concentrations using filtered and unfiltered seawater without UV treatment, and we calculated labile particulate (lp) concentrations as the difference between td and d concentrations. This and the previous studies present the basin scale distributions, which enable us to investigate first order processes that drive the biogeochemistry of Al, Mn, Co, and Pb in the Pacific Ocean. The meridional section of dAl along 170°W (GP19)-160°W (GPc06) from 64°S to 54°N indicates that elevated concentrations (maximum 6.1 nmol/kg) occur between 40°S and 10°S from surface to bottom. However, the maxima of lpAl occur at high latitudes. The lpAl/tdAl ratio has a minimum of 0.26 ± 0.12 (ave ± sd, n = 116) in the zone from 30°S to 0°S. Based on these results, we propose a hypothesis that weathering on land has a significant effect on the distribution of Al in the ocean. Intensive weathering on tropical and subtropical islands and Australia forms kaolinite-dominated soils and laterite. This process provides dAl and kaolinite to the ocean. The supply of kaolinite results in kaolinite-dominated sediments that become a major bottom source for dAl. In contrast, strong sources of Mn and Co are continental shelves around the northern boundary. Dissolved Mn and dCo are released from sediments by manganese reduction and carried by intermediate water circulation. In particular, dCo spreads in the North Pacific Intermediate Water (NPIW), Equatorial Pacific Intermediate Water (EqPIW), and Antarctic Intermediate Water (AAIW); 23–59 pmol/kg at a potential density anomaly (σθ) of 27.0. This is partly owing to the uptake of dCo ...