Coccolithophore calcification studied by single-cell impedance cytometry: Towards single-cell PIC:POC measurements

Since the industrial revolution 30% of the anthropogenic CO2 is absorbed by oceans, resulting in ocean acidification, which is a threat to calcifying algae. As a result, there has been profound interest in the study of calcifying algae, because of their important role in the global carbon cycle. The...

Full description

Bibliographic Details
Published in:Biosensors and Bioelectronics
Main Authors: de Bruijn, Douwe S., ter Braak, Paul M., Van de Waal, Dedmer B., Olthuis, Wouter, van den Berg, Albert
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:https://pure.knaw.nl/portal/en/publications/aef0d454-d509-4620-89d0-a76e5a076bb6
https://doi.org/10.1016/j.bios.2020.112808
https://hdl.handle.net/20.500.11755/aef0d454-d509-4620-89d0-a76e5a076bb6
https://pure.knaw.nl/ws/files/93085443/7068_deBruijn.pdf
Description
Summary:Since the industrial revolution 30% of the anthropogenic CO2 is absorbed by oceans, resulting in ocean acidification, which is a threat to calcifying algae. As a result, there has been profound interest in the study of calcifying algae, because of their important role in the global carbon cycle. The species studied, coccolithophore Emiliania huxleyi, is considered to be globally the single most dominant calcifying algae, which creates a unique exoskeleton from inorganic calcium carbonate platelets. The PIC (particulate inorganic carbon): POC (particulate organic carbon) ratio describes the relative amount of inorganic carbon in the algae and is a critical parameter in the ocean carbon cycle. In this research we explore the use of microfluidic single-cell impedance spectroscopy in the field of calcifying algae. Microfluidic impedance spectroscopy enables us to characterize single-cell electrical properties in a non-invasive and label-free way. We use the ratio of the impedance at high frequency vs. low frequency, known as opacity, to discriminate between calcified coccolithophores and coccolithophores with a calcite exoskeleton dissolved by acidification (decalcified). We have demonstrated that using opacity we can discriminate between calcified and decalcified coccolithophores with an accuracy of 94.1%. We have observed a correlation between the measured opacity and the cell height in the channel, which is supported by FEM simulations. The difference in cell density between calcified and decalcified cells can explain the difference in cell height and therefore the measured opacity.