Responses of symbiotic cnidarians to environmental change

As climate change intensifies, the capacity of organisms to adapt to changing environments becomes increasingly relevant. Heat-induced coral bleaching –the breakdown of the symbiotic association between coral hosts and photosynthetic algae of the family Symbiodiniaceae– is rapidly degrading reefs wo...

Full description

Bibliographic Details
Main Author: Herrera Sarrias, Marcela
Other Authors: Aranda, Manuel, Merzaban, Jasmeen, Voolstra, Christian R., Sweet, Michael, Biological and Environmental Science and Engineering (BESE) Division
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10754/660503
https://doi.org/10.25781/KAUST-J5LV9
Description
Summary:As climate change intensifies, the capacity of organisms to adapt to changing environments becomes increasingly relevant. Heat-induced coral bleaching –the breakdown of the symbiotic association between coral hosts and photosynthetic algae of the family Symbiodiniaceae– is rapidly degrading reefs worldwide. Hence, there is a growing interest to study symbioses that can persist in extreme conditions. The Red Sea is such a place, known as one of the hottest seas where healthy coral reef systems thrive. Here (Chapter 1), we tested the potential of symbiont manipulation as means to improve the thermal resilience of the cnidarian holobiont, particularly using heat tolerant symbiont species from the Red Sea. We used clonal lineages of the model system Aiptasia (host and symbiont), originating from different thermal environments to assess how interchanging either partner affected their short- and long-term performance under heat stress. Our findings revealed that symbioses are not only intra-specific but have also adapted to native, local environments, thus potentially limiting the acclimation capacity of symbiotic cnidarians to climate change. As such, infection with more heat resistant species, even if native, might not necessarily improve thermotolerance of the holobiont. We further investigated (Chapter 2) how environment-dependent specificity, in this case elevated temperature, affects the establishment of novel symbioses. That is, if Aiptasia hosts are, despite exhibiting a high degree of partner fidelity, capable of acquiring more thermotolerant symbionts under stress conditions. Thus, we examined the infection dynamics of multi-species symbioses under different thermal environments and assessed their performance to subsequent heat stress. We showed that temperature, more than host identity, plays a critical role in symbiont uptake and overall performance when heatchallenged. Additionally, we found that pre-exposure to high temperature plays a fundamental role in improving the response to thermal stress, yet, ...