Diffusion Model for Gas Replacement in an Isostructural CH 4 -CO 2 Hydrate System

© 2017 American Chemical Society. Guest exchange in clathrates is a complex activated phenomenon of the guest-host cage interaction on the molecular-scale level. To model this process, we develop a mathematical description for the nonequilibrium binary permeation of guest molecules during gas replac...

Full description

Bibliographic Details
Main Authors: Salamatin A., Falenty A., Kuhs W.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2017
Subjects:
Online Access:http://dspace.kpfu.ru/xmlui/handle/net/130253
Description
Summary:© 2017 American Chemical Society. Guest exchange in clathrates is a complex activated phenomenon of the guest-host cage interaction on the molecular-scale level. To model this process, we develop a mathematical description for the nonequilibrium binary permeation of guest molecules during gas replacement based on the microscopic "hole-in-cage-wall" diffusive mechanism. The transport of gas molecules is envisaged as a series of jumps between occupied and empty neighboring cages without any significant lattice restructuring in the bulk. The gas exchange itself is seen as two-stage swapping initiated by almost instantaneous formation of a mixed hydrate layer on the hydrate surface followed by a much slower permeation-controlled process. The model is constrained by and validated with available time-resolved neutron diffraction data of the isostructural CH 4 guest replacement by CO 2 in methane hydrate, a process of possible importance for the sequestration of CO 2 with concomitant recovery of CH 4 in marine gas hydrates. (Graph Presented).