Evolution of geoids in recent years and its impact on oceanography

Mean surface geostrophic ocean currents may be calculated from the Mean Dynamic Topography (MDT), estimated as the difference between a mean sea surface height (MSS) calculated from radar altimeters and a reference geoid height. A review of the most widely used geoids is presented. The difference be...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Talone, Marco, Meloni, Marco, Pelegri, Josep L., Rosell-Fieschi, Miquel, Flobergaghen, Rune
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2014
Subjects:
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1533
https://doi.org/10.3989/scimar.03824.30A
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1533
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic geoid
mean sea surface
mean dynamic topography
altimetry
surface geostrophic velocity
geoide
nivel medio del mar
topografía media dinámica
altimetría
velocidad geostrófica superficial
spellingShingle geoid
mean sea surface
mean dynamic topography
altimetry
surface geostrophic velocity
geoide
nivel medio del mar
topografía media dinámica
altimetría
velocidad geostrófica superficial
Talone, Marco
Meloni, Marco
Pelegri, Josep L.
Rosell-Fieschi, Miquel
Flobergaghen, Rune
Evolution of geoids in recent years and its impact on oceanography
topic_facet geoid
mean sea surface
mean dynamic topography
altimetry
surface geostrophic velocity
geoide
nivel medio del mar
topografía media dinámica
altimetría
velocidad geostrófica superficial
description Mean surface geostrophic ocean currents may be calculated from the Mean Dynamic Topography (MDT), estimated as the difference between a mean sea surface height (MSS) calculated from radar altimeters and a reference geoid height. A review of the most widely used geoids is presented. The difference between the third release of the Gravity field and steady-state Ocean Circulation Explorer (GOCE) geoid and three earlier geoids (the Earth Geopotential Model 1996 [EGM96], one of the geoids obtained by the Gravity Recovery and Climate Experiment [GRACE05], and the Earth Gravitational Model 2008 [EGM2008]) is computed and interpreted as an ‘artefact’ MDT, i.e. a misfit when non-accurate geoid models are used to calculate the ocean MDT and related geostrophic currents. These results are contrasted with the MDT computed by comparing the GOCE geoid with the MSS distributed by Collecte Localisation Satellites in 2001 (CLS01). The comparison shows that there was a strong influence of altimetry measurements in the construction of the EGM96 geoid, i.e. the artefact MDT calculated using EGM96 shows a high resemblance to the MDT computed using the MSS CLS01 field, both considering GOCE as the reference geoid. The correlation disappears largely, but not completely, for the two most recent geoids; in particular, the MSS has greater global influence on GRACE05 than on EGM2008 although the latter does better at latitudes of less than 60° and is more useful for reproducing the intense western boundary currents. The results show that EGM96 may lead to significant errors in the spatial gradients of MDT (for latitudes of less than 60° the global root mean square is 0.2422 m) and therefore in the geostrophic surface velocities. When the spatially averaged GRACE and EGM2008 geoids are used for latitudes of less than 60°, the global MDT root mean square is substantially reduced. Las corrientes geostróficas superficiales se pueden obtener a partir de la Topografía Dinámica Media (MDT), a su vez estimada comparando la altura Media de la Superficie del Mar (MSS), medida por altimetría de radar, con la altura del geoide de referencia. En este estudio se presenta una reseña de los geoides más usados. Se calcula una TDM ficticia a partir de la diferencia entre la tercera versión del geoide medido por la misión Gravity field and steady-state Ocean Circulation Explorer (GOCE) y tres geoides precedentes: el Earth Geopotential Model 1996 (EGM96), uno de los geoides obtenidos por la misión Gravity Recovery and Climate Experiment (GRACE05) y el Earth Gravitational Model 2008 (EGM2008). Estos resultados se contrastan con la TDM calculada comparando el geoide de GOCE con la MSS distribuida por el Collecte Localisation Satellites en 2001 (CLS01). La comparación muestra una fuerte influencia de medidas altimétricas en la síntesis del geoide EGM96, i.e. la MDT ficticia calculada con el EGM96 es muy parecida a la MDT calculada mediante la MSS CLS01, usando en ambos casos el geoide de GOCE como referencia. La correlación desaparece en gran medida, pero no por completo, con los dos geoides más recientes: EGM2008 and GRACE05; en particular, la MSS tiene mayor influencia global sobre GRACE05 que sobre EGM2008, aunque este último se comporta mejor para latitudes inferiores a 60°, siendo más adecuado para reproducir las intensas corrientes de frontera oeste. Los resultados muestran que la utilización de EGM96 puede ocasionar errores importantes en los gradientes espaciales de MDT (para latitudes inferiores a 60° la media cuadrática global es de 0,2422 m) y, consecuentemente, en las velocidades superficiales geostróficas. Cuando se utilizan los valores promediados espacialmente de GRACE y EGM2008 para latitudes inferiores a 60°, la media cuadrática global de la MDT se reduce substancialmente.
format Article in Journal/Newspaper
author Talone, Marco
Meloni, Marco
Pelegri, Josep L.
Rosell-Fieschi, Miquel
Flobergaghen, Rune
author_facet Talone, Marco
Meloni, Marco
Pelegri, Josep L.
Rosell-Fieschi, Miquel
Flobergaghen, Rune
author_sort Talone, Marco
title Evolution of geoids in recent years and its impact on oceanography
title_short Evolution of geoids in recent years and its impact on oceanography
title_full Evolution of geoids in recent years and its impact on oceanography
title_fullStr Evolution of geoids in recent years and its impact on oceanography
title_full_unstemmed Evolution of geoids in recent years and its impact on oceanography
title_sort evolution of geoids in recent years and its impact on oceanography
publisher Consejo Superior de Investigaciones Científicas
publishDate 2014
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1533
https://doi.org/10.3989/scimar.03824.30A
long_lat ENVELOPE(-54.083,-54.083,-61.200,-61.200)
ENVELOPE(-68.429,-68.429,-67.816,-67.816)
geographic Fuerte
Misión
Referencia
geographic_facet Fuerte
Misión
Referencia
genre Arctic
genre_facet Arctic
op_source Scientia Marina; Vol. 78 No. 2 (2014); 155-164
Scientia Marina; Vol. 78 Núm. 2 (2014); 155-164
1886-8134
0214-8358
10.3989/scimar.2014.78n2
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1533/1715
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1533/1709
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1533/1716
Andersen O. B., Knudsen P. 2008. The DNSC08 ocean-wide altimetry derived gravity anomaly field. Geophys. Res. Abstracts 10, EGU2008-A-07163, EGU General Assembly 2008.
Andersen O.B., Knudsen P. 2009. DNSC08 mean sea surface and mean dynamic topography models. J. Geophys. Res. 114: C11001. http://dx.doi.org/10.1029/2008JC005179
Andersen O.B., Knudsen P. 2010. The DTU10 mean sea surface and mean dynamic topography – Improvements in the Arctic and coastal zone. Ocean Surface Topography Science Team Meeting, Lisbon, Portugal.
Bingham R.J., Haines K., Hughes C.W. 2008. Calculating the Ocean's Mean Dynamic Topography from a Mean Sea Surface and a Geoid. J. Atmos. Oceanic Tech. 25: 1808-1822. http://dx.doi.org/10.1175/2008JTECHO568.1
Bingham R. J., Knudsen P., Andersen O. et al. 2011. An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys. Res. Lett. 38: L01606. http://dx.doi.org/10.1029/2010GL045633
ESA 1999. Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233 (1). Reports for mission selection of the four candidate Earth Explorer missions (available at http://esamultimedia.esa.int/docs/goce_sp1233_1.pdf).
Foerste C., Flechtner F., Schmidt R. et al. 2008. EIGEN-GL05C - A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys. Res. Abstracts 10, EGU2008-A-06944, EGU General Assembly 2008.
Gill A.E. 1982. Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30, 662 pp, Academic Press, New York.
Hernandez F., Schaeffer P. 2001. The CLS01 mean sea surface: A validation with the GSFC00.1 surface. Tech. Rep., CLS, Ramonville, St Agne, France, 14 pp.
Hughes C.W., Bingham R.J. 2008. An Oceanographer's Guide to GOCE and the Geoid. Ocean Sci. 4: 15-29. http://dx.doi.org/10.5194/os-4-15-2008
Hwang C., Hsu H.Y., Jang R.J. 2002. Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: applications of deflection-geoid and inverse Vening Meinesz formulae. J. Geodesy 76: 407-418. http://dx.doi.org/10.1007/s00190-002-0265-6
Lemoine F.G., Kenyon S.C., Factor J.K. et al. 1998 The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96, NASA Technical Paper, NASA/TP-1998-206861.
Maximenko N., Niiler P., Centurioni L. et al. 2009. Mean Dynamic Topography of the Ocean Derived from Satellite and Drifting Buoy Data Using Three Different Techniques. J. Atmos. Oceanic Technol. 26: 1910-1919. http://dx.doi.org/10.1175/2009JTECHO672.1
Moritz H. 2000. Geodetic Reference System 1980. J. Geodesy 74: 128-162. http://dx.doi.org/10.1007/s001900050278
Pavlis N.K., Holmes S.A., Kenyon S.C. et al. 2008. EGM 2008: An overview of its Development and Evaluation. IAG Int. Symp. GGEO 2008, 23-27 June, Chania, Crete, Greece.
Rio M.H., Hernandez F. 2004. A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res. 109: C12032. http://dx.doi.org/10.1029/2003JC002226
Rio M.-H., Mulet S., Bruinsma S. et al. 2012. Accuracy of recent GRACE and GOCE geoid models from an oceanographic perspective. Proceedings of the EGU General Assembly 2012.
Sandwell D.T., Smith W.H.F. 1997. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. 102: 10039-10054. http://dx.doi.org/10.1029/96JB03223
Schaeffer P., Faugere Y., Legeais J.F. et al. 2011. The CNES/CLS 2011 Global Mean Sea Surface. Oral presentation at Ocean Surface Topography Science Team 2011 meeting, available at http://www.aviso.oceanobs.com/en/courses/sci-teams/ostst-2011/ostst-2011-presentations.html.
Schaeffer P., Faugére Y., Legeais J.F. et al. 2012. The CNES_CLS11 Global Mean Sea Surface Computed from 16 Years of Satellite Altimeter Data. Mar. Geodesy 35-1: 3-19.
Schmitz W.J., McCartney M.S. 1993. On the North Atlantic circulation. Rev. Geophys. 31: 29-49. http://dx.doi.org/10.1029/92RG02583
Tapley B.D., Bettadpur S., Watkins M. et al. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 31: L09607. http://dx.doi.org/10.1029/2004GL019920
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1533
doi:10.3989/scimar.03824.30A
op_rights Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.03824.30A
https://doi.org/10.3989/scimar.2014.78n2
https://doi.org/10.1029/2008JC005179
https://doi.org/10.1175/2008JTECHO568.1
https://doi.org/10.1029/2010GL045633
https://doi.org/10.5194/os-4-15-2008
https://do
container_title Scientia Marina
container_volume 78
container_issue 2
container_start_page 155
op_container_end_page 164
_version_ 1766302547808616448
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1533 2023-05-15T14:28:22+02:00 Evolution of geoids in recent years and its impact on oceanography Sobre la evolución de los geoides en los últimos años y su impacto en la oceanografía Talone, Marco Meloni, Marco Pelegri, Josep L. Rosell-Fieschi, Miquel Flobergaghen, Rune 2014-06-30 text/html application/pdf text/xml https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1533 https://doi.org/10.3989/scimar.03824.30A eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1533/1715 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1533/1709 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1533/1716 Andersen O. B., Knudsen P. 2008. The DNSC08 ocean-wide altimetry derived gravity anomaly field. Geophys. Res. Abstracts 10, EGU2008-A-07163, EGU General Assembly 2008. Andersen O.B., Knudsen P. 2009. DNSC08 mean sea surface and mean dynamic topography models. J. Geophys. Res. 114: C11001. http://dx.doi.org/10.1029/2008JC005179 Andersen O.B., Knudsen P. 2010. The DTU10 mean sea surface and mean dynamic topography – Improvements in the Arctic and coastal zone. Ocean Surface Topography Science Team Meeting, Lisbon, Portugal. Bingham R.J., Haines K., Hughes C.W. 2008. Calculating the Ocean's Mean Dynamic Topography from a Mean Sea Surface and a Geoid. J. Atmos. Oceanic Tech. 25: 1808-1822. http://dx.doi.org/10.1175/2008JTECHO568.1 Bingham R. J., Knudsen P., Andersen O. et al. 2011. An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys. Res. Lett. 38: L01606. http://dx.doi.org/10.1029/2010GL045633 ESA 1999. Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233 (1). Reports for mission selection of the four candidate Earth Explorer missions (available at http://esamultimedia.esa.int/docs/goce_sp1233_1.pdf). Foerste C., Flechtner F., Schmidt R. et al. 2008. EIGEN-GL05C - A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys. Res. Abstracts 10, EGU2008-A-06944, EGU General Assembly 2008. Gill A.E. 1982. Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30, 662 pp, Academic Press, New York. Hernandez F., Schaeffer P. 2001. The CLS01 mean sea surface: A validation with the GSFC00.1 surface. Tech. Rep., CLS, Ramonville, St Agne, France, 14 pp. Hughes C.W., Bingham R.J. 2008. An Oceanographer's Guide to GOCE and the Geoid. Ocean Sci. 4: 15-29. http://dx.doi.org/10.5194/os-4-15-2008 Hwang C., Hsu H.Y., Jang R.J. 2002. Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: applications of deflection-geoid and inverse Vening Meinesz formulae. J. Geodesy 76: 407-418. http://dx.doi.org/10.1007/s00190-002-0265-6 Lemoine F.G., Kenyon S.C., Factor J.K. et al. 1998 The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96, NASA Technical Paper, NASA/TP-1998-206861. Maximenko N., Niiler P., Centurioni L. et al. 2009. Mean Dynamic Topography of the Ocean Derived from Satellite and Drifting Buoy Data Using Three Different Techniques. J. Atmos. Oceanic Technol. 26: 1910-1919. http://dx.doi.org/10.1175/2009JTECHO672.1 Moritz H. 2000. Geodetic Reference System 1980. J. Geodesy 74: 128-162. http://dx.doi.org/10.1007/s001900050278 Pavlis N.K., Holmes S.A., Kenyon S.C. et al. 2008. EGM 2008: An overview of its Development and Evaluation. IAG Int. Symp. GGEO 2008, 23-27 June, Chania, Crete, Greece. Rio M.H., Hernandez F. 2004. A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res. 109: C12032. http://dx.doi.org/10.1029/2003JC002226 Rio M.-H., Mulet S., Bruinsma S. et al. 2012. Accuracy of recent GRACE and GOCE geoid models from an oceanographic perspective. Proceedings of the EGU General Assembly 2012. Sandwell D.T., Smith W.H.F. 1997. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. 102: 10039-10054. http://dx.doi.org/10.1029/96JB03223 Schaeffer P., Faugere Y., Legeais J.F. et al. 2011. The CNES/CLS 2011 Global Mean Sea Surface. Oral presentation at Ocean Surface Topography Science Team 2011 meeting, available at http://www.aviso.oceanobs.com/en/courses/sci-teams/ostst-2011/ostst-2011-presentations.html. Schaeffer P., Faugére Y., Legeais J.F. et al. 2012. The CNES_CLS11 Global Mean Sea Surface Computed from 16 Years of Satellite Altimeter Data. Mar. Geodesy 35-1: 3-19. Schmitz W.J., McCartney M.S. 1993. On the North Atlantic circulation. Rev. Geophys. 31: 29-49. http://dx.doi.org/10.1029/92RG02583 Tapley B.D., Bettadpur S., Watkins M. et al. 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 31: L09607. http://dx.doi.org/10.1029/2004GL019920 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1533 doi:10.3989/scimar.03824.30A Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 78 No. 2 (2014); 155-164 Scientia Marina; Vol. 78 Núm. 2 (2014); 155-164 1886-8134 0214-8358 10.3989/scimar.2014.78n2 geoid mean sea surface mean dynamic topography altimetry surface geostrophic velocity geoide nivel medio del mar topografía media dinámica altimetría velocidad geostrófica superficial info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2014 ftjscientiamarin https://doi.org/10.3989/scimar.03824.30A https://doi.org/10.3989/scimar.2014.78n2 https://doi.org/10.1029/2008JC005179 https://doi.org/10.1175/2008JTECHO568.1 https://doi.org/10.1029/2010GL045633 https://doi.org/10.5194/os-4-15-2008 https://do 2022-03-20T16:31:28Z Mean surface geostrophic ocean currents may be calculated from the Mean Dynamic Topography (MDT), estimated as the difference between a mean sea surface height (MSS) calculated from radar altimeters and a reference geoid height. A review of the most widely used geoids is presented. The difference between the third release of the Gravity field and steady-state Ocean Circulation Explorer (GOCE) geoid and three earlier geoids (the Earth Geopotential Model 1996 [EGM96], one of the geoids obtained by the Gravity Recovery and Climate Experiment [GRACE05], and the Earth Gravitational Model 2008 [EGM2008]) is computed and interpreted as an ‘artefact’ MDT, i.e. a misfit when non-accurate geoid models are used to calculate the ocean MDT and related geostrophic currents. These results are contrasted with the MDT computed by comparing the GOCE geoid with the MSS distributed by Collecte Localisation Satellites in 2001 (CLS01). The comparison shows that there was a strong influence of altimetry measurements in the construction of the EGM96 geoid, i.e. the artefact MDT calculated using EGM96 shows a high resemblance to the MDT computed using the MSS CLS01 field, both considering GOCE as the reference geoid. The correlation disappears largely, but not completely, for the two most recent geoids; in particular, the MSS has greater global influence on GRACE05 than on EGM2008 although the latter does better at latitudes of less than 60° and is more useful for reproducing the intense western boundary currents. The results show that EGM96 may lead to significant errors in the spatial gradients of MDT (for latitudes of less than 60° the global root mean square is 0.2422 m) and therefore in the geostrophic surface velocities. When the spatially averaged GRACE and EGM2008 geoids are used for latitudes of less than 60°, the global MDT root mean square is substantially reduced. Las corrientes geostróficas superficiales se pueden obtener a partir de la Topografía Dinámica Media (MDT), a su vez estimada comparando la altura Media de la Superficie del Mar (MSS), medida por altimetría de radar, con la altura del geoide de referencia. En este estudio se presenta una reseña de los geoides más usados. Se calcula una TDM ficticia a partir de la diferencia entre la tercera versión del geoide medido por la misión Gravity field and steady-state Ocean Circulation Explorer (GOCE) y tres geoides precedentes: el Earth Geopotential Model 1996 (EGM96), uno de los geoides obtenidos por la misión Gravity Recovery and Climate Experiment (GRACE05) y el Earth Gravitational Model 2008 (EGM2008). Estos resultados se contrastan con la TDM calculada comparando el geoide de GOCE con la MSS distribuida por el Collecte Localisation Satellites en 2001 (CLS01). La comparación muestra una fuerte influencia de medidas altimétricas en la síntesis del geoide EGM96, i.e. la MDT ficticia calculada con el EGM96 es muy parecida a la MDT calculada mediante la MSS CLS01, usando en ambos casos el geoide de GOCE como referencia. La correlación desaparece en gran medida, pero no por completo, con los dos geoides más recientes: EGM2008 and GRACE05; en particular, la MSS tiene mayor influencia global sobre GRACE05 que sobre EGM2008, aunque este último se comporta mejor para latitudes inferiores a 60°, siendo más adecuado para reproducir las intensas corrientes de frontera oeste. Los resultados muestran que la utilización de EGM96 puede ocasionar errores importantes en los gradientes espaciales de MDT (para latitudes inferiores a 60° la media cuadrática global es de 0,2422 m) y, consecuentemente, en las velocidades superficiales geostróficas. Cuando se utilizan los valores promediados espacialmente de GRACE y EGM2008 para latitudes inferiores a 60°, la media cuadrática global de la MDT se reduce substancialmente. Article in Journal/Newspaper Arctic Scientia Marina (E-Journal) Fuerte ENVELOPE(-54.083,-54.083,-61.200,-61.200) Misión ENVELOPE(-68.429,-68.429,-67.816,-67.816) Referencia Scientia Marina 78 2 155 164