Foraminiferal morphogroups in dysoxic shelf deposits from the Jurassic of Spitsbergen

Analysis of benthic foraminiferal assemblages was performed in Bathonian to Kimmeridgian deposits through a section covering the lower half of the Agardhfjellet Formation in central Spitsbergen. The section consists mainly of organic-rich shales, which contain low-diversity agglutinated assemblages....

Full description

Bibliographic Details
Published in:Polar Research
Main Authors: Nagy, Jenö, Reolid, Matías, Rodríguez-Tovar, Francisco J.
Format: Article in Journal/Newspaper
Language:English
Published: Norwegian Polar Institute 2009
Subjects:
Online Access:https://polarresearch.net/index.php/polar/article/view/2824
https://doi.org/10.3402/polar.v28i2.6119
Description
Summary:Analysis of benthic foraminiferal assemblages was performed in Bathonian to Kimmeridgian deposits through a section covering the lower half of the Agardhfjellet Formation in central Spitsbergen. The section consists mainly of organic-rich shales, which contain low-diversity agglutinated assemblages. In this foraminiferal succession five morphogroups were differentiated according to shell architecture (general shape, mode of coiling and number of chambers), integrated with the supposed microhabitat (epifaunal, shallow infaunal and deep infaunal) and feeding strategy (suspension-feeder, herbivore, bacterivore, etc.). The environmental evolution of the analysed section is interpreted by using the stratigraphic distribution of morphogroups, combined with species diversities and sedimentary data, in a sequence stratigraphic framework. The section comprises two depositional sequences, which demonstrate that species diversity and relative frequency of morphogroups are correlative with transgressive–regressive trends controlling depth and oxygenation of the water column. In both sequences, the maximum flooding interval is characterized by increased organic carbon content, dominance of the epifaunal morphogroups and reduced species diversity: features reflecting the increased degree of stagnation separating the transgressive phase from the regressive phase.