A Mathematical Model of Heat Transfer in Spheroplastic

Spheroplastics are composite materials composed of a polymer or organosilicate binder and hollow spherical inclusions (mostly, of glass, but there are also of carbon, phenol, and epoxy), which are called microspheres and have a diameter within a millimeter with the wall thickness of several micromet...

Full description

Bibliographic Details
Published in:Mathematics and Mathematical Modeling
Main Authors: V. Zarubin S., G. Kuvyrkin N., I. Savelyeva Yu., В. Зарубин С., Г. Кувыркин Н., И. Савельева Ю.
Format: Article in Journal/Newspaper
Language:Russian
Published: NEICON 2017
Subjects:
Online Access:https://www.mathmelpub.ru/jour/article/view/49
https://doi.org/10.7463/mathm.0416.0846276
Description
Summary:Spheroplastics are composite materials composed of a polymer or organosilicate binder and hollow spherical inclusions (mostly, of glass, but there are also of carbon, phenol, and epoxy), which are called microspheres and have a diameter within a millimeter with the wall thickness of several micrometers. To reduce the material density in watercraft constructions sometimes are used so called macrospheres of up to 40 mm in diameter and shell thickness of 0,5--1,5 mm from spheroplastic with microspheres.Microspheres may contain inert gases such as nitrogen. Many countries have commercialised quartz microspheres. The USA, in particular, produces Q-Gel microspheres with density of 300 kg / m3, the bulk density - 100 kg / m3 and the average diameter of 75 microns,characterized by a high mechanical strength and low cost. Carbon microspheres having low mechanical properties can absorb radio waves in certain frequency ranges. Spheroplastic with silicone microspheres combine relatively high mechanical and dielectric properties.In virtue of low thermal conductivity spheroplastics are used in various heat-insulating structures. As the thermal insulation coatings, the spheroplastic covers the outer surface of the pipes, in particular oil and gas pipelines in the permafrost zones, regions of swampy ground, and underwater. The effective heat conductivity factor, primarily, determines the specific application of spheroplastic as a thermal insulation material. To quantify the value of this factor is necessary to have a mathematical model describing heat ransfer in spheroplastic.The paper presents a four-phase mathematical model of the heat transfer in a representative element of a spheroplastic structure placed in an unlimited array of homogeneous material, the thermal conductivity of which is to be determined as desired characteristics of spheroplastic. This model in combination with a dual variational formulation of stationary heat conduction problem in the inhomogeneous solid first is used to define the guaranteed two-sided boundaries of the parameter space in which there are the true values of effective thermal conductivity of spheroplastic, and then to calculate the dependences of this factor on the bulk concentration of microspheres. The paper conducts a quantitative analysis of the calculated dependences and determines the values of their greatest possible accuracy, which allow us to measure a reliability degree of the predicted effective thermal conductivity of the spheroplastic. К сферопластикам относят композиционные материалы, состоящие из полимерного или органосиликатного связующего и полых шаровых включений (в большинстве случаев стеклянных, но применяют и углеродные, фенольные и эпоксидные), называемых микросферами и имеющими диаметр в пределах миллиметра с толщиной стенки в несколько микрометров. Для снижения плотности материала в конструкциях плавучих средств в некоторых случаях используют так называемые макросферы диаметром до 40~мм и оболочкой толщиной 0,5--1,5~мм из сферопластика с микросферами.Микросферы могут содержать инертные газы, например азот. Во многих странах налажен промышленный выпуск микросфер из кварца. В частности, в США изготавливаются микросферы марки Q-Gel, имеющие плотность 300 кг/м3, насыпную плотность — до 100 кг/м3 и средний диаметр 75 мкм, отличающиеся высокой механической прочностью и низкой стоимостью. Углеродные микросферы, обладая невысокими механическими свойствами, могут поглощать радиоизлучение в определенных диапазонах частот. Сферопластики с кремнийорганическими микросферами сочетают достаточно высокие механические и диэлектрические свойстваВ силу низкой теплопроводности сферопластики применяют в различных теплоизоляционных конструкциях. В качестве теплоизоляционных покрытий сферопластики наносят на внешнюю поверхность труб, в частности нефтегазопроводов, эксплуатирующихся в зонах вечной мерзлоты, в заболоченных местностях и под водой. Конкретную область использования сферопластика как теплоизоляционного материала прежде всего определяет его эффективный коэффициент теплопроводности. Для количественной оценки значения этого коэффициента необходимо располагать математической моделью, описывающей перенос тепловой энергии в сферопластике.В данной работе построена четырехфазная математическая модель теплопереноса в представительном элементе структуры сферопластика, помещенном в неограниченный массив однородного материала, коэффициент теплопроводности которого подлежит определению в качестве искомой характеристики сферопластика. Эта модель в сочетании с двойственной вариационной формулировкой задачи стационарной теплопроводности в неоднородном твердом теле сначала использована для установления гарантированных двусторонних границ области параметров, в которой находятся истинные значения эффективного коэффициента теплопроводности сферопластика, а затем для получения расчетных зависимостей этого коэффициента от объемной концентрации микросфер. Проведен количественный анализ полученных расчетных зависимостей и определены значения их наибольшей возможной погрешности, позволяющие оценивать степень достоверности результатов прогноза эффективного коэффициента теплопроводности сферопластика.