Estimates of the statistical correlation between the extreme ice pressure patterns with various spatial resolution
Ice pressure is characterized with significant spatial variability. Study of this variability with the help of in situ observations is rather difficult, because (1) the instrumental measurements are expensive and technically complicated, and, hence, the amount of such measurements is little, and (2)...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article in Journal/Newspaper |
Language: | Russian |
Published: |
IGRAS
2023
|
Subjects: | |
Online Access: | https://ice-snow.igras.ru/jour/article/view/1156 https://doi.org/10.31857/S2076673423010088 |
Summary: | Ice pressure is characterized with significant spatial variability. Study of this variability with the help of in situ observations is rather difficult, because (1) the instrumental measurements are expensive and technically complicated, and, hence, the amount of such measurements is little, and (2) the visual observations have pre-dominantly qualitative character and depend significantly on the observer’s experience. The most widely used method of obtaining the ice pressure information is model simulations. The existing ice dynamics models allow simulating the ice pressure averaged within the area of the model grid cell, which usually has the spatial size varying from 5 to 25 km, sometimes - up to 50 km. It is clear that such spatial resolution does not give the picture of local peaks of ice pressure with spatial scale much less that the size of the grid cell. The aim of the presented paper is, basing on the model results with spatial resolution from 5 to 50 km, to study the statistical correlations between the ice pressure fields with various spatial resolutions, and to evaluate the possibility of calculating the intensity and probability of ice pressure peaks with spatial scale less than the spatial resolution of the model. In order to solve this problem, the numerical dynamic-thermodynamic model of ice cover evolution developed both for the entire Arctic Ocean and for large regions (the Barents and Kara Seas), and, for more detailed spatial resolution, for some smaller basins (the Pechora Sea, the south-western Kara Sea, the Baidara Bay), was used. The ice pressure fields within the same region and the same period of time were simulated with various spatial resolutions – from 5 to 50 km. The initial ice conditions were stated with the help the AARI ice charts which cover both the entire Arctic Ocean and the specific regions mentioned above. The comparison of model results with various spatial resolutions allowed revealing moderate statistical correlation between the average ice pressure obtained from the ... |
---|