Construction of 3D geological models in glacial deposits to characterise migration of pollution

The National geological database at the Geological Survey of Denmark and Greenland (GEUS) is based on an extensive well database Jupiter, a geophysical database Gerda (Tulstrup 2003) and a recently established database for various types of geological models. These databases are integrated in a GIS s...

Full description

Bibliographic Details
Published in:GEUS Bulletin
Main Authors: Klint, Knud E.S., von Platen-Hallermund, Frants, Christophersen, Mette
Format: Article in Journal/Newspaper
Language:English
Published: Geological Survey of Denmark and Greenland (GEUS) 2006
Subjects:
Online Access:https://geusbulletin.org/index.php/geusb/article/view/4883
https://doi.org/10.34194/geusb.v10.4883
Description
Summary:The National geological database at the Geological Survey of Denmark and Greenland (GEUS) is based on an extensive well database Jupiter, a geophysical database Gerda (Tulstrup 2003) and a recently established database for various types of geological models. These databases are integrated in a GIS system. The integration of this data enables new possibilities of constructing improved geological models. GIS systems offer a powerful tool for the geologist not only in combining multiple data, but also in visualising the model and hence presenting the final product in a simple and understandable way. 3D geological models will become increasingly important for the execution of improved cost-benefit analysis and risk assessment of contaminated sites, as well as strategic evaluation of groundwater and raw material resources in general. The possibility of storing such models on a public platform will be a major advance for future users of geological databases. The primary goal of this paper is to demonstrate the potential of an integrated GIS system, with an example of how traditional geological information may be combined in new ways in order to improve the correlation of well data in multiple directions. The application is demonstrated for a highly contaminated industrial site in the town of Ringe, Denmark (Fig. 1).