Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere
The trend of strengthening of the Antarctic polar vortex in late spring and early summer (November–December) has been observed in recent decades. A good example of this trend is the dynamics of the Antarctic polar vortex in 2020 when it existed until the last week of December. In 2019, conversely, o...
Published in: | Journal of Climate |
---|---|
Main Authors: | , , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | Russian |
Published: |
Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт
2023
|
Subjects: | |
Online Access: | https://www.aaresearch.science/jour/article/view/574 https://doi.org/10.30758/0555-2648-2023-69-4-452-463 |
_version_ | 1828676297653485568 |
---|---|
author | V. V. Zuev E. S. Savelieva V. N. Krupchatnikov I. V. Borovko A. V. Pavlinsky O. G. Chkhetiani E. A. Maslennikova |
author2 | This study was supported by the Russian Science Foundation (project No. 23-17-00273 https://rscf. ru/en/project/23-17-00273/). |
author_facet | V. V. Zuev E. S. Savelieva V. N. Krupchatnikov I. V. Borovko A. V. Pavlinsky O. G. Chkhetiani E. A. Maslennikova |
author_sort | V. V. Zuev |
collection | Arctic and Antarctic Research |
container_title | Journal of Climate |
description | The trend of strengthening of the Antarctic polar vortex in late spring and early summer (November–December) has been observed in recent decades. A good example of this trend is the dynamics of the Antarctic polar vortex in 2020 when it existed until the last week of December. In 2019, conversely, on the contrary, an unusually early breakup of the polar vortex occurred, a minor sudden stratospheric warming was recorded. Strengthening (or weakening) of the Antarctic polar vortex occurs as a result of an increase (or decrease) in the stratospheric meridional temperature gradient under conditions of growth (or decline) in the temperature of the lower subtropical stratosphere. We considered the temperature variations in the lower subtropical stratosphere in the spring of 2019 and 2020 and the corresponding response of the Antarctic polar vortex. The dynamics of the Antarctic polar vortex in September–October 2019 and November 2020 was largely synchronized with the temperature changes in the lower subtropical stratosphere relative to climatological means. Using correlation analysis, we show that the Antarctic polar vortex dynamics in December is largely due to the temperature changes in the lower subtropical stratosphere that occurred in the second half of November, which manifested itself in 2020. The trend of strengthening of the Antarctic polar vortex in late spring and early summer (November–December) has been observed in recent decades. A good example of this trend is the dynamics of the Antarctic polar vortex in 2020 when it existed until the last week of December. In 2019, conversely, on the contrary, an unusually early breakup of the polar vortex occurred, a minor sudden stratospheric warming was recorded. Strengthening (or weakening) of the Antarctic polar vortex occurs as a result of an increase (or decrease) in the stratospheric meridional temperature gradient under conditions of growth (or decline) in the temperature of the lower subtropical stratosphere. We considered the temperature variations in the ... |
format | Article in Journal/Newspaper |
genre | Antarc* Antarctic Arctic |
genre_facet | Antarc* Antarctic Arctic |
geographic | Antarctic The Antarctic |
geographic_facet | Antarctic The Antarctic |
id | ftjaaresearch:oai:oai.aari.elpub.ru:article/574 |
institution | Open Polar |
language | Russian |
op_collection_id | ftjaaresearch |
op_relation | https://www.aaresearch.science/jour/article/view/574/268 Fogt R.L., Marshall G.J. The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim. Change. 2020; 11(4): e652. https://doi.org/10.1002/wcc.652 Gillett N.P., Kell T.D., Jones P.D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. 2006; 33(23): L23704. https://doi.org/10.1029/2006GL027721 Limpasuvan V., Hartmann D.L. Eddies and the annular modes of climate variability. Geophys. Res. Lett. 1999; 26(20): 3133–3136. https://doi.org/10.1029/1999GL010478 Waugh D.W., Polvani L.M. Stratospheric polar vortices. Polvani L.M., Sobel A.H., Waugh D.W. (Eds.) The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010; 190: 43–57. https://doi.org/10.1002/9781118666630.ch3 Lim E.-P., Hendon H.H., Boschat G., Hudson D., Thompson D.W.J., Dowdy A.J., Arblaster J.M. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 2019; 12: 896–901. https://doi.org/10.1038/s41561-019-0456-x Kidston J., Scaife A.A., Hardiman S.C., Mitchell D.M., Butchart N., Baldwin M.P., Gray L.J. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015; 8(6): 433–440. https://doi.org/10.1038/ngeo2424 Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? Bull. Amer. Meteor. Soc. 2017; 98(1): 37–44. https://doi.org/10.1175/BAMS-D-15-00212.1 Hurwitz M.M., Newman P.A., Li F., Oman L.D., Morgenstern O., Braesicke P., Pyle J.A. Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models. J. Geophys. Res. 2010; 115(D7): D07105. https://doi.org/10.1029/2009JD012788 Solomon S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 1999; 37(3): 275–316. https://doi.org/10.1029/1999RG900008 Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole. Geophys. Res. Lett. 2004; 31(21): L21104. https://doi.org/10.1029/2004GL020596 Vargin P.N., Nikiforova M.P., Zvyagintsev A.M. Variability of the Antarctic ozone anomaly in 2011–2018. Russ. Meteorol. Hydrol. 2020; 45(2): 63–73. https://doi.org/10.3103/S1068373920020016 Smyshlyaev S.P., Blakitnaya P.A., Motsakov M.A. Numerical modeling of the influence of physical and chemical factors on the interannual variability of Antarctic ozone. Russ. Meteorol. Hydrol. 2020; 45(3): 153–160. https://doi.org/10.3103/S1068373920030024 Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate. 2007; 20(3): 449–469. https://doi.org/10.1175/JCLI3996.1 Charlton A.J., Polvani L.M., Perlwitz J., Sassi F., Manzini E., Shibata K., Pawson S., Nielsen J.E., Rind D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate. 2007; 20(3): 470–488. https://doi.org/10.1175/JCLI3994.1 Butler A.H., Seidel D.J., Hardiman S.C., Butchart N., Birner T., Match A. Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc. 2015; 96(11): 1913–1928. https://doi.org/10.1175/BAMS-D-13-00173.1 Charlton A.J., O’Neill A., Lahoz W.A., Berrisford P. The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution. J. Atmos. Sci. 2005; 62(3): 590–602. https://doi.org/10.1175/JAS-3318.1 Safieddine S., Bouillon M., Paracho A.-C., Jumelet J., Tencé F., Pazmino A., Goutail F., Wespes C., Bekki S., Boynard A., Hadji-Lazaro J., Coheur P.-F., Hurtmans D., Clerbaux C. Antarctic ozone enhancement during the 2019 sudden stratospheric warming event. Geophys. Res. Lett. 2020; 47(14): e2020GL087810. https://doi.org/10.1029/2020GL087810 Lim E.-P., Hendon H.H., Butler A.H., Thompson D.W.J., Lawrence Z.D., Scaife A.A., Shepherd T.G., Polichtchouk I., Nakamura H., Kobayashi C., Comer R., Coy L., Dowdy A., Garreaud R.D., Newman P.A., Wang G. The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts. B. Am. Meteorol. Soc. 2021; 102(6): E1150–E1171. https://doi.org/10.1175/BAMS-D-20-0112.1 Roy R., Kuttippurath J., Lefèvre F., Raj S., Kumar P. The sudden stratospheric warming and chemical ozone loss in the Antarctic winter 2019: comparison with the winters of 1988 and 2002. Theor. Appl. Climatol. 2022; 149: 119–130. https://doi.org/10.1007/s00704-022-04031-6 Wargan K., Weir B., Manney G.L., Cohn S.E., Livesey N.J. The anomalous 2019 Antarctic ozone hole in the GEOS constituent data assimilation system with MLS observations. J. Geophys. Res. 2020; 125(18): e2020JD033335. https://doi.org/10.1029/2020JD033335 Yook S., Thompson D.W.J., Solomon S. Climate impacts and potential drivers of the unprecedented Antarctic ozone holes of 2020 and 2021. Geophys. Res. Lett. 2022; 49(10): e2022GL098064. https://doi.org/10.1029/2022GL098064 Klekociuk A.R., Tully M.B., Krummel P.B., Henderson S.I., Smale D., Querel R., Nichol S., Alexander S.P., Fraser P.J., Nedoluha G. The Antarctic ozone hole during 2020. J. South. Hemisph. Earth Syst. Sci. 2021; 72(1): 19–37. https://doi.org/10.1071/ES21015 Zuev V.V., Savelieva E.S., Pavlinsky A.V., Sidorovski E.A. The unprecedented duration of the 2020 ozone depletion in the Antarctic. Dokl. Earth Sci. 2023; 509(1): 358–362. https://doi.org/10.1134/S1028334X22601754 Stenchikov G., Hamilton K., Stouffer R.J., Robock A., Ramaswamy V., Santer B., Graf H.-F. Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res. 2006; 111: D07107. https://doi.org/10.1029/2005JD006286 Driscoll S., Bozzo A., Gray L.J., Robock A., Stenchikov G. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. 2012; 117: D17105. https://doi.org/10.1029/2012JD017607 Zuev V.V., Savelieva E. The cause of the spring strengthening of the Antarctic polar vortex. Dynam. Atmos. Oceans. 2019; 87: 101097. https://doi.org/10.1016/j.dynatmoce.2019.101097 Zuev V.V., Savelieva E. The cause of the strengthening of the Antarctic polar vortex during October–November periods. J. Atmos. Sol.-Terr. Phys. 2019; 190: 1–5. https://doi.org/10.1016/j.jastp.2019.04.016 Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz‐Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.‐N. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 2020; 146(729): 1–51. https://doi.org/10.1002/qj.3803 Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate. 2017; 30(14): 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1 Zuev V.V., Savelieva E. Stratospheric polar vortex dynamics according to the vortex delineation method. J. Earth Syst. Sci. 2023; 132(1): 39. https://doi.org/10.1007/s12040-023-02060-x Zuev V.V., Savelieva E. Antarctic polar vortex dynamics depending on wind speed along the vortex edge. Pure Appl. Geophys. 2022; 179(6–7): 2609–2616. https://doi.org/10.1007/s00024022-03054-4 Yulaeva E., Holton J.R., Wallace J.M. On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci. 1994; 51(2): 169–174. https://doi.org/10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2 Steinbrecht W., Hassler B., Claude H., Winkler P., Stolarski R.S. Global distribution of total ozone and lower stratospheric temperature variations. Atmos. Chem. Phys. 2003; 3(5): 1421–1438. https://doi.org/10.5194/acp-3-1421-2003 Noguchi S., Kuroda Y., Kodera K., Watanabe S. Robust enhancement of tropical convective activity by the 2019 Antarctic sudden stratospheric warming. Geophys. Res. Lett. 2020; 47(15): e2020GL088743. https://doi.org/10.1029/2020GL088743 https://www.aaresearch.science/jour/article/view/574 |
op_rights | Authors retain the copyright of their papers without restriction and grant the Arctic and Antarctic Research (Russia) journal right of first publication with the work simultaneously licensed under the the CC BY NC 4.0 Creative Commons Attribution License. Авторы, публикующиеся в данном Журнале, сохраняют авторские права на свое произведение и предоставляют Журналу право публикации на условиях лицензии Creative Commons Attribution International 4.0 CC-BY, которая позволяет неограниченно использовать произведения при условии указания авторства и ссылки на оригинальную публикацию в Журнале. |
op_source | Arctic and Antarctic Research; Том 69, № 4 (2023); 452-463 Проблемы Арктики и Антарктики; Том 69, № 4 (2023); 452-463 2618-6713 0555-2648 |
publishDate | 2023 |
publisher | Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт |
record_format | openpolar |
spelling | ftjaaresearch:oai:oai.aari.elpub.ru:article/574 2025-04-06T14:35:45+00:00 Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere V. V. Zuev E. S. Savelieva V. N. Krupchatnikov I. V. Borovko A. V. Pavlinsky O. G. Chkhetiani E. A. Maslennikova This study was supported by the Russian Science Foundation (project No. 23-17-00273 https://rscf. ru/en/project/23-17-00273/). 2023-12-09 application/pdf https://www.aaresearch.science/jour/article/view/574 https://doi.org/10.30758/0555-2648-2023-69-4-452-463 rus rus Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт https://www.aaresearch.science/jour/article/view/574/268 Fogt R.L., Marshall G.J. The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim. Change. 2020; 11(4): e652. https://doi.org/10.1002/wcc.652 Gillett N.P., Kell T.D., Jones P.D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. 2006; 33(23): L23704. https://doi.org/10.1029/2006GL027721 Limpasuvan V., Hartmann D.L. Eddies and the annular modes of climate variability. Geophys. Res. Lett. 1999; 26(20): 3133–3136. https://doi.org/10.1029/1999GL010478 Waugh D.W., Polvani L.M. Stratospheric polar vortices. Polvani L.M., Sobel A.H., Waugh D.W. (Eds.) The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010; 190: 43–57. https://doi.org/10.1002/9781118666630.ch3 Lim E.-P., Hendon H.H., Boschat G., Hudson D., Thompson D.W.J., Dowdy A.J., Arblaster J.M. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 2019; 12: 896–901. https://doi.org/10.1038/s41561-019-0456-x Kidston J., Scaife A.A., Hardiman S.C., Mitchell D.M., Butchart N., Baldwin M.P., Gray L.J. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015; 8(6): 433–440. https://doi.org/10.1038/ngeo2424 Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? Bull. Amer. Meteor. Soc. 2017; 98(1): 37–44. https://doi.org/10.1175/BAMS-D-15-00212.1 Hurwitz M.M., Newman P.A., Li F., Oman L.D., Morgenstern O., Braesicke P., Pyle J.A. Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models. J. Geophys. Res. 2010; 115(D7): D07105. https://doi.org/10.1029/2009JD012788 Solomon S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 1999; 37(3): 275–316. https://doi.org/10.1029/1999RG900008 Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole. Geophys. Res. Lett. 2004; 31(21): L21104. https://doi.org/10.1029/2004GL020596 Vargin P.N., Nikiforova M.P., Zvyagintsev A.M. Variability of the Antarctic ozone anomaly in 2011–2018. Russ. Meteorol. Hydrol. 2020; 45(2): 63–73. https://doi.org/10.3103/S1068373920020016 Smyshlyaev S.P., Blakitnaya P.A., Motsakov M.A. Numerical modeling of the influence of physical and chemical factors on the interannual variability of Antarctic ozone. Russ. Meteorol. Hydrol. 2020; 45(3): 153–160. https://doi.org/10.3103/S1068373920030024 Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate. 2007; 20(3): 449–469. https://doi.org/10.1175/JCLI3996.1 Charlton A.J., Polvani L.M., Perlwitz J., Sassi F., Manzini E., Shibata K., Pawson S., Nielsen J.E., Rind D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate. 2007; 20(3): 470–488. https://doi.org/10.1175/JCLI3994.1 Butler A.H., Seidel D.J., Hardiman S.C., Butchart N., Birner T., Match A. Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc. 2015; 96(11): 1913–1928. https://doi.org/10.1175/BAMS-D-13-00173.1 Charlton A.J., O’Neill A., Lahoz W.A., Berrisford P. The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution. J. Atmos. Sci. 2005; 62(3): 590–602. https://doi.org/10.1175/JAS-3318.1 Safieddine S., Bouillon M., Paracho A.-C., Jumelet J., Tencé F., Pazmino A., Goutail F., Wespes C., Bekki S., Boynard A., Hadji-Lazaro J., Coheur P.-F., Hurtmans D., Clerbaux C. Antarctic ozone enhancement during the 2019 sudden stratospheric warming event. Geophys. Res. Lett. 2020; 47(14): e2020GL087810. https://doi.org/10.1029/2020GL087810 Lim E.-P., Hendon H.H., Butler A.H., Thompson D.W.J., Lawrence Z.D., Scaife A.A., Shepherd T.G., Polichtchouk I., Nakamura H., Kobayashi C., Comer R., Coy L., Dowdy A., Garreaud R.D., Newman P.A., Wang G. The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts. B. Am. Meteorol. Soc. 2021; 102(6): E1150–E1171. https://doi.org/10.1175/BAMS-D-20-0112.1 Roy R., Kuttippurath J., Lefèvre F., Raj S., Kumar P. The sudden stratospheric warming and chemical ozone loss in the Antarctic winter 2019: comparison with the winters of 1988 and 2002. Theor. Appl. Climatol. 2022; 149: 119–130. https://doi.org/10.1007/s00704-022-04031-6 Wargan K., Weir B., Manney G.L., Cohn S.E., Livesey N.J. The anomalous 2019 Antarctic ozone hole in the GEOS constituent data assimilation system with MLS observations. J. Geophys. Res. 2020; 125(18): e2020JD033335. https://doi.org/10.1029/2020JD033335 Yook S., Thompson D.W.J., Solomon S. Climate impacts and potential drivers of the unprecedented Antarctic ozone holes of 2020 and 2021. Geophys. Res. Lett. 2022; 49(10): e2022GL098064. https://doi.org/10.1029/2022GL098064 Klekociuk A.R., Tully M.B., Krummel P.B., Henderson S.I., Smale D., Querel R., Nichol S., Alexander S.P., Fraser P.J., Nedoluha G. The Antarctic ozone hole during 2020. J. South. Hemisph. Earth Syst. Sci. 2021; 72(1): 19–37. https://doi.org/10.1071/ES21015 Zuev V.V., Savelieva E.S., Pavlinsky A.V., Sidorovski E.A. The unprecedented duration of the 2020 ozone depletion in the Antarctic. Dokl. Earth Sci. 2023; 509(1): 358–362. https://doi.org/10.1134/S1028334X22601754 Stenchikov G., Hamilton K., Stouffer R.J., Robock A., Ramaswamy V., Santer B., Graf H.-F. Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res. 2006; 111: D07107. https://doi.org/10.1029/2005JD006286 Driscoll S., Bozzo A., Gray L.J., Robock A., Stenchikov G. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. 2012; 117: D17105. https://doi.org/10.1029/2012JD017607 Zuev V.V., Savelieva E. The cause of the spring strengthening of the Antarctic polar vortex. Dynam. Atmos. Oceans. 2019; 87: 101097. https://doi.org/10.1016/j.dynatmoce.2019.101097 Zuev V.V., Savelieva E. The cause of the strengthening of the Antarctic polar vortex during October–November periods. J. Atmos. Sol.-Terr. Phys. 2019; 190: 1–5. https://doi.org/10.1016/j.jastp.2019.04.016 Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz‐Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.‐N. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 2020; 146(729): 1–51. https://doi.org/10.1002/qj.3803 Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate. 2017; 30(14): 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1 Zuev V.V., Savelieva E. Stratospheric polar vortex dynamics according to the vortex delineation method. J. Earth Syst. Sci. 2023; 132(1): 39. https://doi.org/10.1007/s12040-023-02060-x Zuev V.V., Savelieva E. Antarctic polar vortex dynamics depending on wind speed along the vortex edge. Pure Appl. Geophys. 2022; 179(6–7): 2609–2616. https://doi.org/10.1007/s00024022-03054-4 Yulaeva E., Holton J.R., Wallace J.M. On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci. 1994; 51(2): 169–174. https://doi.org/10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2 Steinbrecht W., Hassler B., Claude H., Winkler P., Stolarski R.S. Global distribution of total ozone and lower stratospheric temperature variations. Atmos. Chem. Phys. 2003; 3(5): 1421–1438. https://doi.org/10.5194/acp-3-1421-2003 Noguchi S., Kuroda Y., Kodera K., Watanabe S. Robust enhancement of tropical convective activity by the 2019 Antarctic sudden stratospheric warming. Geophys. Res. Lett. 2020; 47(15): e2020GL088743. https://doi.org/10.1029/2020GL088743 https://www.aaresearch.science/jour/article/view/574 Authors retain the copyright of their papers without restriction and grant the Arctic and Antarctic Research (Russia) journal right of first publication with the work simultaneously licensed under the the CC BY NC 4.0 Creative Commons Attribution License. Авторы, публикующиеся в данном Журнале, сохраняют авторские права на свое произведение и предоставляют Журналу право публикации на условиях лицензии Creative Commons Attribution International 4.0 CC-BY, которая позволяет неограниченно использовать произведения при условии указания авторства и ссылки на оригинальную публикацию в Журнале. Arctic and Antarctic Research; Том 69, № 4 (2023); 452-463 Проблемы Арктики и Антарктики; Том 69, № 4 (2023); 452-463 2618-6713 0555-2648 sudden stratospheric warming Antarctic polar vortex lower subtropical stratosphere info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2023 ftjaaresearch 2025-03-10T07:54:42Z The trend of strengthening of the Antarctic polar vortex in late spring and early summer (November–December) has been observed in recent decades. A good example of this trend is the dynamics of the Antarctic polar vortex in 2020 when it existed until the last week of December. In 2019, conversely, on the contrary, an unusually early breakup of the polar vortex occurred, a minor sudden stratospheric warming was recorded. Strengthening (or weakening) of the Antarctic polar vortex occurs as a result of an increase (or decrease) in the stratospheric meridional temperature gradient under conditions of growth (or decline) in the temperature of the lower subtropical stratosphere. We considered the temperature variations in the lower subtropical stratosphere in the spring of 2019 and 2020 and the corresponding response of the Antarctic polar vortex. The dynamics of the Antarctic polar vortex in September–October 2019 and November 2020 was largely synchronized with the temperature changes in the lower subtropical stratosphere relative to climatological means. Using correlation analysis, we show that the Antarctic polar vortex dynamics in December is largely due to the temperature changes in the lower subtropical stratosphere that occurred in the second half of November, which manifested itself in 2020. The trend of strengthening of the Antarctic polar vortex in late spring and early summer (November–December) has been observed in recent decades. A good example of this trend is the dynamics of the Antarctic polar vortex in 2020 when it existed until the last week of December. In 2019, conversely, on the contrary, an unusually early breakup of the polar vortex occurred, a minor sudden stratospheric warming was recorded. Strengthening (or weakening) of the Antarctic polar vortex occurs as a result of an increase (or decrease) in the stratospheric meridional temperature gradient under conditions of growth (or decline) in the temperature of the lower subtropical stratosphere. We considered the temperature variations in the ... Article in Journal/Newspaper Antarc* Antarctic Arctic Arctic and Antarctic Research Antarctic The Antarctic Journal of Climate |
spellingShingle | sudden stratospheric warming Antarctic polar vortex lower subtropical stratosphere V. V. Zuev E. S. Savelieva V. N. Krupchatnikov I. V. Borovko A. V. Pavlinsky O. G. Chkhetiani E. A. Maslennikova Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere |
title | Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere |
title_full | Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere |
title_fullStr | Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere |
title_full_unstemmed | Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere |
title_short | Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere |
title_sort | antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere |
topic | sudden stratospheric warming Antarctic polar vortex lower subtropical stratosphere |
topic_facet | sudden stratospheric warming Antarctic polar vortex lower subtropical stratosphere |
url | https://www.aaresearch.science/jour/article/view/574 https://doi.org/10.30758/0555-2648-2023-69-4-452-463 |