Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009
The Arctic polar vortex is often affected by wave activity during its life cycle. The planetary Rossby waves propagating from the troposphere to the stratosphere occasionally lead to the displacement or splitting of the polar vortex, accompanied by sudden stratospheric warming (SSW). In January 2009...
Published in: | Arctic and Antarctic Research |
---|---|
Main Authors: | , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | Russian |
Published: |
Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт
2021
|
Subjects: | |
Online Access: | https://www.aaresearch.science/jour/article/view/351 https://doi.org/10.30758/0555-2648-2021-67-2-134-146 |
_version_ | 1828683057980243968 |
---|---|
author | V. V. Zuev E. S. Savelieva A. V. Pavlinsky В. В. Зуев Е. С. Савельева А. В. Павлинский |
author2 | This work was supported by the State contract no. 121031300156-5. Исследование выполнено в рамках госбюджетной темы № 121031300156-5. |
author_facet | V. V. Zuev E. S. Savelieva A. V. Pavlinsky В. В. Зуев Е. С. Савельева А. В. Павлинский |
author_sort | V. V. Zuev |
collection | Arctic and Antarctic Research |
container_issue | 2 |
container_start_page | 134 |
container_title | Arctic and Antarctic Research |
container_volume | 67 |
description | The Arctic polar vortex is often affected by wave activity during its life cycle. The planetary Rossby waves propagating from the troposphere to the stratosphere occasionally lead to the displacement or splitting of the polar vortex, accompanied by sudden stratospheric warming (SSW). In January 2009, one of the largest SSWs was observed in the Arctic. In this work, the dynamics of the polar vortex during the 2009 SSW is considered using a new method that allows one to estimate the vortex area, the wind speed at the vortex edge, the mean temperature and ozone mass mixing ratio inside the vortex, based on the fact that the Arctic vortex edge at the 50 and 10 hPa pressure levels is determined by the geopotential values, respectively, 19.5. 104 and 29.5. 104 m2 /s2 , using the ERA5 reanalysis data. The application of this method is justified for the Arctic polar vortex, which is characterized by significant variability, especially during the period of its splitting. The splitting of the polar vortex in 2009 was observed on January 24 and 28, respectively, in the middle and lower stratosphere. About a week after the splitting, the vortices became closer in characteristics to small cyclones, which completely collapsed within 1–3 weeks. The influence of planetary wave activity on the polar vortex does not always lead to its breakdown. Short-term splitting of the polar vortex is sometimes observed for several days after which the polar vortex strengthens again and PSCs form inside the vortex. Such a recovery of the polar vortex is most likely to occur in the winter. Based on the analysis of the dynamics of the Arctic polar vortex for 1979–2020 and using the example of the 2009 SSW, we showed that when the vortex area decreases to less than 10 million km2 and the mean wind speed at the vortex edge decreases below 30 and 45 m/s, respectively, in the lower and middle stratosphere, the polar vortex becomes a small cyclone (with significantly higher temperatures within it), which usually collapses within 3 weeks. ... |
format | Article in Journal/Newspaper |
genre | Arctic Arctic |
genre_facet | Arctic Arctic |
geographic | Arctic |
geographic_facet | Arctic |
id | ftjaaresearch:oai:oai.aari.elpub.ru:article/351 |
institution | Open Polar |
language | Russian |
op_collection_id | ftjaaresearch |
op_container_end_page | 146 |
op_doi | https://doi.org/10.30758/0555-2648-2021-67-2-134-14610.30758/0555-2648-2021-67-2 |
op_relation | https://www.aaresearch.science/jour/article/view/351/199 Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56. № 11. P. 1594–1613. Waugh D.W., Polvani L.M. Stratospheric polar vortices // The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010. V. 190. P. 43–57. Polvani L.M., Saravanan R. The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere // J. Atmos. Sci. 2000. V. 57. № 21. P. 3663–3685. Plumb R.A. Planetary waves and the extratropical winter stratosphere // The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010. V. 190. P. 23‒41. Butler A.H., Seidel D.J., Hardiman S.C., Butchart N., Birner T., Match A. Defining Sudden Stratospheric Warmings // Bull. Amer. Meteor. Soc. 2015. V. 96. № 11. P. 1913–1928. Limpasuvan V., Thompson D.W.J., Hartmann D.L. The life cycle of the Northern Hemisphere sudden stratospheric warmings // J. Climate. 2004. V. 17. № 13. P. 2584–2596. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks // J. Climate. 2007. V. 20. № 3. P. 449–469. Charlton A.J., Polvani L.M., Perlwitz J., Sassi F., Manzini E., Shibata K., Pawson S., Nielsen J.E., Rind D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations // J. Climate. 2007. V. 20. № 3. P. 470–488. Matthewman N.J., Esler J.G., Charlton-Perez A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure // J. Climate. 2009. V. 2. № 6. P. 1566‒1585. Abridged final report of the seventh session of the commission for atmospheric sciences, Manila, 27 February — 10 March 1978. WMO Rep. 509. Geneva: WMO, 1978. 113 p. Flury T., Hocke K., Haefele A., Kämpfer N., Lehmann R. Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming // J. Geophys. Res. 2009. V. 114. № 18. P. D18302. Kuttippurath J., Nikulin G. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010 // Atmos. Chem. Phys. 2012. V. 12. № 17. P. 8115–8129. Torre L., Garcia R.R., Barriopedro D., Chandran A. Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model // J. Geophys. Res. 2012. V. 117. № 4. P. D04110. Варгин П.Н., Кострыкин С.В., Ракушина Е.В., Володин Е.М., Погорельцев А.И. Исследование изменчивости дат весенних перестроек циркуляции стратосферы и параметров стратосферного полярного вихря в Арктике по данным моделирования и реанализа // Известия РАН. Физика атмосферы и океана. 2020. Т. 56. № 5. С. 526–539. Savenkova E.N., Kanukhina A.Yu., Pogoreltsev A.I., Merzlyakov E.G. Variability of the springtime transition date and planetary waves in the stratosphere // J. Atmos. Sol.-Terr. Phys. 2012. V. 90–91. P. 1–8. Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone // Nature. 1986. V. 321. P. 755–758. Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole // Geophys. Res. Lett. 2004. V. 31. № 21. P. L21104. Solomon S. Stratospheric ozone depletion: a review of concepts and history // Rev. Geophys. 1999. V. 37. № 3. P. 275–316. Manney G.L., Zurek R.W. On the motion of air through the stratospheric polar vortex // J. Atmos. Sci. 1994. V. 51. № 20. P. 2973‒2994. Sobel A.H., Plumb R.A., Waugh D.W. Methods of calculating transport across the polar vortex edge // J. Atmos. Sci. 1997. V. 54. № 18. P. 2241–2260. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000. 969 p. Whiteway J.A., Duck T.J., Donovan D.P., Bird J.C., Pal S.R., Carswell A.I. Measurements of gravity wave activity within and around the Arctic stratospheric vortex // Geophys. Res. Lett. 1997. V. 24. № 11. P. 1387‒1390. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F. The ERAInterim reanalysis: configuration and performance of the data assimilation system // Q. J. Roy. Meteor. Soc. 2011. V. 37. № 656. P. 553–597. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., PeubeyC., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.N. The ERA5 global reanalysis // Q. J. Roy. Meteor. Soc. 2020. V. 146. № 729. P. 1–51. Lawrence Z.D., Manney G.L., Wargan K. Reanalysis intercomparisons of stratospheric polar processing diagnostics // Atmos. Chem. Phys. 2018. V. 18. № 18. P. 13547–13579. Smith M.L., McDonald A.J. A quantitative measure of polar vortex strength using the function M // J. Geophys. Res. 2014. V. 119. № 10. P. 5966–5985. Holton J. An Introduction to Dynamic Meteorology. 4th Edition. California: Academic Press, 2004. 535 p. Manney G.L., Schwartz M.J., Krüger K., Santee M.L., Pawson S., Lee J.N., Daffer W.H., Fuller R.A., Livesey N.J. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming // Geophys. Res. Lett. 2009. V. 36. № 12. P. L12815. Wang H., Fuller-Rowell T.J., Akmaev R.A., Hu M., Kleist D.T., Iredell M.D. First simulations with a whole atmosphere data assimilation and forecast system: The January 2009 major sudden stratospheric warming // J. Geophys. Res. 2011. V. 116. № 12. P. A12321. Klimenko M.V., Bessarab F.S., Sukhodolov T.V., Klimenko V.V., Koren’kov Yu.N., Zakharenkova I.E., Chirik N.V., Vasil’ev P.A., Kulyamin D.V., Shmidt Kh., Funke B., Rozanov E.V. Ionospheric effects of the sudden stratospheric warming in 2009: Results of simulation with the first version of the EAGLE model // Russ. J. Phys. Chem. B. 2018. V. 12. № 4. P. 760–770. Labitzke K., Kunze M. On the remarkable Arctic winter in 2008/2009 // J. Geophys. Res. 2009. V. 114. P. D00I02. Iida C., Hirooka T., Eguchi N. Circulation changes in the stratosphere and mesosphere during the stratospheric sudden warming event in January 2009 // J. Geophys. Res. 2014. V. 119. № 12. P. 7104–7115. Funke B., Ball W., Bender S., Gardini A., Harvey V.L., Lambert A., López-Puertas M., Marsh D.R., Meraner K., Nieder H., Päivärinta S.-M., Pérot K., Randall C.E., Reddmann T., Rozanov E., Schmidt H., Seppälä A., Sinnhuber M., Sukhodolov T., Stiller G.P., Tsvetkova N.D., Verronen P.T., Versick S., von Clarmann T., Walker K.A., Yushkov V. HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009 // Atmos. Chem. Phys. 2017. V. 17. № 5. P. 3573–3604. Tao M., Konopka P., Ploeger F., Grooß J.-U., Müller R., Volk C.M., Walker K.A., Riese M. Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere // Atmos. Chem. Phys. 2015. V. 15. № 15. P. 8695–8715. Gray L.J., Brown M.J., Knight J., Andrews M., Lu H., O’Reilly C., Anstey J. Forecasting extreme stratospheric polar vortex events // Nature Communication. 2020. V. 11. P. 4630. Zuev V.V., Savelieva E. The role of the polar vortex strength during winter in Arctic ozone depletion from late winter to spring // Polar Sci. 2019. V. 22. P. 100469. Zuev V.V., Savelieva E. Arctic polar vortex dynamics during winter 2006/2007 // Polar Sci. 2020. V. 25. P. 100532. https://www.aaresearch.science/jour/article/view/351 |
op_rights | Authors retain the copyright of their papers without restriction and grant the Arctic and Antarctic Research (Russia) journal right of first publication with the work simultaneously licensed under the the CC BY NC 4.0 Creative Commons Attribution License. Авторы, публикующиеся в данном Журнале, сохраняют авторские права на свое произведение и предоставляют Журналу право публикации на условиях лицензии Creative Commons Attribution International 4.0 CC-BY, которая позволяет неограниченно использовать произведения при условии указания авторства и ссылки на оригинальную публикацию в Журнале. |
op_source | Arctic and Antarctic Research; Том 67, № 2 (2021); 134-146 Проблемы Арктики и Антарктики; Том 67, № 2 (2021); 134-146 2618-6713 0555-2648 10.30758/0555-2648-2021-67-2 |
publishDate | 2021 |
publisher | Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт |
record_format | openpolar |
spelling | ftjaaresearch:oai:oai.aari.elpub.ru:article/351 2025-04-06T14:41:35+00:00 Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009 Анализ динамики арктического полярного вихря во время внезапного стратосферного потепления в январе 2009 г V. V. Zuev E. S. Savelieva A. V. Pavlinsky В. В. Зуев Е. С. Савельева А. В. Павлинский This work was supported by the State contract no. 121031300156-5. Исследование выполнено в рамках госбюджетной темы № 121031300156-5. 2021-07-09 application/pdf https://www.aaresearch.science/jour/article/view/351 https://doi.org/10.30758/0555-2648-2021-67-2-134-146 rus rus Государственный научный центр Российской Федерации Арктический и антарктический научно-исследовательский институт https://www.aaresearch.science/jour/article/view/351/199 Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56. № 11. P. 1594–1613. Waugh D.W., Polvani L.M. Stratospheric polar vortices // The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010. V. 190. P. 43–57. Polvani L.M., Saravanan R. The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere // J. Atmos. Sci. 2000. V. 57. № 21. P. 3663–3685. Plumb R.A. Planetary waves and the extratropical winter stratosphere // The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010. V. 190. P. 23‒41. Butler A.H., Seidel D.J., Hardiman S.C., Butchart N., Birner T., Match A. Defining Sudden Stratospheric Warmings // Bull. Amer. Meteor. Soc. 2015. V. 96. № 11. P. 1913–1928. Limpasuvan V., Thompson D.W.J., Hartmann D.L. The life cycle of the Northern Hemisphere sudden stratospheric warmings // J. Climate. 2004. V. 17. № 13. P. 2584–2596. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks // J. Climate. 2007. V. 20. № 3. P. 449–469. Charlton A.J., Polvani L.M., Perlwitz J., Sassi F., Manzini E., Shibata K., Pawson S., Nielsen J.E., Rind D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations // J. Climate. 2007. V. 20. № 3. P. 470–488. Matthewman N.J., Esler J.G., Charlton-Perez A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure // J. Climate. 2009. V. 2. № 6. P. 1566‒1585. Abridged final report of the seventh session of the commission for atmospheric sciences, Manila, 27 February — 10 March 1978. WMO Rep. 509. Geneva: WMO, 1978. 113 p. Flury T., Hocke K., Haefele A., Kämpfer N., Lehmann R. Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming // J. Geophys. Res. 2009. V. 114. № 18. P. D18302. Kuttippurath J., Nikulin G. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010 // Atmos. Chem. Phys. 2012. V. 12. № 17. P. 8115–8129. Torre L., Garcia R.R., Barriopedro D., Chandran A. Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model // J. Geophys. Res. 2012. V. 117. № 4. P. D04110. Варгин П.Н., Кострыкин С.В., Ракушина Е.В., Володин Е.М., Погорельцев А.И. Исследование изменчивости дат весенних перестроек циркуляции стратосферы и параметров стратосферного полярного вихря в Арктике по данным моделирования и реанализа // Известия РАН. Физика атмосферы и океана. 2020. Т. 56. № 5. С. 526–539. Savenkova E.N., Kanukhina A.Yu., Pogoreltsev A.I., Merzlyakov E.G. Variability of the springtime transition date and planetary waves in the stratosphere // J. Atmos. Sol.-Terr. Phys. 2012. V. 90–91. P. 1–8. Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone // Nature. 1986. V. 321. P. 755–758. Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole // Geophys. Res. Lett. 2004. V. 31. № 21. P. L21104. Solomon S. Stratospheric ozone depletion: a review of concepts and history // Rev. Geophys. 1999. V. 37. № 3. P. 275–316. Manney G.L., Zurek R.W. On the motion of air through the stratospheric polar vortex // J. Atmos. Sci. 1994. V. 51. № 20. P. 2973‒2994. Sobel A.H., Plumb R.A., Waugh D.W. Methods of calculating transport across the polar vortex edge // J. Atmos. Sci. 1997. V. 54. № 18. P. 2241–2260. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000. 969 p. Whiteway J.A., Duck T.J., Donovan D.P., Bird J.C., Pal S.R., Carswell A.I. Measurements of gravity wave activity within and around the Arctic stratospheric vortex // Geophys. Res. Lett. 1997. V. 24. № 11. P. 1387‒1390. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F. The ERAInterim reanalysis: configuration and performance of the data assimilation system // Q. J. Roy. Meteor. Soc. 2011. V. 37. № 656. P. 553–597. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., PeubeyC., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.N. The ERA5 global reanalysis // Q. J. Roy. Meteor. Soc. 2020. V. 146. № 729. P. 1–51. Lawrence Z.D., Manney G.L., Wargan K. Reanalysis intercomparisons of stratospheric polar processing diagnostics // Atmos. Chem. Phys. 2018. V. 18. № 18. P. 13547–13579. Smith M.L., McDonald A.J. A quantitative measure of polar vortex strength using the function M // J. Geophys. Res. 2014. V. 119. № 10. P. 5966–5985. Holton J. An Introduction to Dynamic Meteorology. 4th Edition. California: Academic Press, 2004. 535 p. Manney G.L., Schwartz M.J., Krüger K., Santee M.L., Pawson S., Lee J.N., Daffer W.H., Fuller R.A., Livesey N.J. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming // Geophys. Res. Lett. 2009. V. 36. № 12. P. L12815. Wang H., Fuller-Rowell T.J., Akmaev R.A., Hu M., Kleist D.T., Iredell M.D. First simulations with a whole atmosphere data assimilation and forecast system: The January 2009 major sudden stratospheric warming // J. Geophys. Res. 2011. V. 116. № 12. P. A12321. Klimenko M.V., Bessarab F.S., Sukhodolov T.V., Klimenko V.V., Koren’kov Yu.N., Zakharenkova I.E., Chirik N.V., Vasil’ev P.A., Kulyamin D.V., Shmidt Kh., Funke B., Rozanov E.V. Ionospheric effects of the sudden stratospheric warming in 2009: Results of simulation with the first version of the EAGLE model // Russ. J. Phys. Chem. B. 2018. V. 12. № 4. P. 760–770. Labitzke K., Kunze M. On the remarkable Arctic winter in 2008/2009 // J. Geophys. Res. 2009. V. 114. P. D00I02. Iida C., Hirooka T., Eguchi N. Circulation changes in the stratosphere and mesosphere during the stratospheric sudden warming event in January 2009 // J. Geophys. Res. 2014. V. 119. № 12. P. 7104–7115. Funke B., Ball W., Bender S., Gardini A., Harvey V.L., Lambert A., López-Puertas M., Marsh D.R., Meraner K., Nieder H., Päivärinta S.-M., Pérot K., Randall C.E., Reddmann T., Rozanov E., Schmidt H., Seppälä A., Sinnhuber M., Sukhodolov T., Stiller G.P., Tsvetkova N.D., Verronen P.T., Versick S., von Clarmann T., Walker K.A., Yushkov V. HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009 // Atmos. Chem. Phys. 2017. V. 17. № 5. P. 3573–3604. Tao M., Konopka P., Ploeger F., Grooß J.-U., Müller R., Volk C.M., Walker K.A., Riese M. Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere // Atmos. Chem. Phys. 2015. V. 15. № 15. P. 8695–8715. Gray L.J., Brown M.J., Knight J., Andrews M., Lu H., O’Reilly C., Anstey J. Forecasting extreme stratospheric polar vortex events // Nature Communication. 2020. V. 11. P. 4630. Zuev V.V., Savelieva E. The role of the polar vortex strength during winter in Arctic ozone depletion from late winter to spring // Polar Sci. 2019. V. 22. P. 100469. Zuev V.V., Savelieva E. Arctic polar vortex dynamics during winter 2006/2007 // Polar Sci. 2020. V. 25. P. 100532. https://www.aaresearch.science/jour/article/view/351 Authors retain the copyright of their papers without restriction and grant the Arctic and Antarctic Research (Russia) journal right of first publication with the work simultaneously licensed under the the CC BY NC 4.0 Creative Commons Attribution License. Авторы, публикующиеся в данном Журнале, сохраняют авторские права на свое произведение и предоставляют Журналу право публикации на условиях лицензии Creative Commons Attribution International 4.0 CC-BY, которая позволяет неограниченно использовать произведения при условии указания авторства и ссылки на оригинальную публикацию в Журнале. Arctic and Antarctic Research; Том 67, № 2 (2021); 134-146 Проблемы Арктики и Антарктики; Том 67, № 2 (2021); 134-146 2618-6713 0555-2648 10.30758/0555-2648-2021-67-2 полярная стратосфера ozone depletion polar stratosphere polar vortex sudden stratospheric warming геопотенциал озоновая аномалия полярный вихрь info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjaaresearch https://doi.org/10.30758/0555-2648-2021-67-2-134-14610.30758/0555-2648-2021-67-2 2025-03-10T07:54:42Z The Arctic polar vortex is often affected by wave activity during its life cycle. The planetary Rossby waves propagating from the troposphere to the stratosphere occasionally lead to the displacement or splitting of the polar vortex, accompanied by sudden stratospheric warming (SSW). In January 2009, one of the largest SSWs was observed in the Arctic. In this work, the dynamics of the polar vortex during the 2009 SSW is considered using a new method that allows one to estimate the vortex area, the wind speed at the vortex edge, the mean temperature and ozone mass mixing ratio inside the vortex, based on the fact that the Arctic vortex edge at the 50 and 10 hPa pressure levels is determined by the geopotential values, respectively, 19.5. 104 and 29.5. 104 m2 /s2 , using the ERA5 reanalysis data. The application of this method is justified for the Arctic polar vortex, which is characterized by significant variability, especially during the period of its splitting. The splitting of the polar vortex in 2009 was observed on January 24 and 28, respectively, in the middle and lower stratosphere. About a week after the splitting, the vortices became closer in characteristics to small cyclones, which completely collapsed within 1–3 weeks. The influence of planetary wave activity on the polar vortex does not always lead to its breakdown. Short-term splitting of the polar vortex is sometimes observed for several days after which the polar vortex strengthens again and PSCs form inside the vortex. Such a recovery of the polar vortex is most likely to occur in the winter. Based on the analysis of the dynamics of the Arctic polar vortex for 1979–2020 and using the example of the 2009 SSW, we showed that when the vortex area decreases to less than 10 million km2 and the mean wind speed at the vortex edge decreases below 30 and 45 m/s, respectively, in the lower and middle stratosphere, the polar vortex becomes a small cyclone (with significantly higher temperatures within it), which usually collapses within 3 weeks. ... Article in Journal/Newspaper Arctic Arctic Arctic and Antarctic Research Arctic Arctic and Antarctic Research 67 2 134 146 |
spellingShingle | полярная стратосфера ozone depletion polar stratosphere polar vortex sudden stratospheric warming геопотенциал озоновая аномалия полярный вихрь V. V. Zuev E. S. Savelieva A. V. Pavlinsky В. В. Зуев Е. С. Савельева А. В. Павлинский Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009 |
title | Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009 |
title_full | Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009 |
title_fullStr | Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009 |
title_full_unstemmed | Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009 |
title_short | Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009 |
title_sort | analysis of the arctic polar vortex dynamics during the sudden stratospheric warming in january 2009 |
topic | полярная стратосфера ozone depletion polar stratosphere polar vortex sudden stratospheric warming геопотенциал озоновая аномалия полярный вихрь |
topic_facet | полярная стратосфера ozone depletion polar stratosphere polar vortex sudden stratospheric warming геопотенциал озоновая аномалия полярный вихрь |
url | https://www.aaresearch.science/jour/article/view/351 https://doi.org/10.30758/0555-2648-2021-67-2-134-146 |