Exploring South African Pacific oyster mariculture potential through combined Earth observation and bioenergetics modelling

The combined use of satellite-derived environmental data and a dynamic energy budget (DEB) model to determine Pacific oyster growth potential was adapted for the South African marine environment. Study areas consisted of the West Coast (high-chlorophyll, low temperature) and the South Coast (variabl...

Full description

Bibliographic Details
Main Authors: Krupandan, A. G., Gernez, P., Palmer, S., /Thomas, Yoann, Barill, L.
Format: Text
Language:English
Published: 2022
Subjects:
Online Access:https://www.documentation.ird.fr/hor/fdi:010085156
Description
Summary:The combined use of satellite-derived environmental data and a dynamic energy budget (DEB) model to determine Pacific oyster growth potential was adapted for the South African marine environment. Study areas consisted of the West Coast (high-chlorophyll, low temperature) and the South Coast (variable chlorophyll, higher temperature) ecoregions. Chlorophyll-a and sea surface temperature products from the Moderate Resolution Imaging Spectroradiometer (MODIS) were used to simulate yearly growth for 18 years. Average growth performance at the end of the culture period was mapped and compared for prominent sectors. Industry-relevant growth indicators, "days to reach commercial weight" and "optimal culture period length" were also established. High growth potential was found in eastern nearshore sectors of the South Coast, particularly Plettenberg Bay, where oysters reached a median total weight (TW) of 271 g within 9 months. Other sectors in the region yielded Large commercial size within 150 days. However, South Coast growth hotspots were found to be highly variable, with transient unfavourable growth conditions leading to low flesh mass relative to TW. Growth potential was favourable in northern sectors of the West Coast, where oysters reached a median TW of up to 148 g in 9 months, Large commercial size within 200 days, and contained high flesh mass relative to TW. Current oyster production sites were not found to be optimal for growth. Higher-growth sites coincide with areas in economic decline or with high levels of poverty. However, due to constraints of applying DEB models over large spatial scales, these results are considered preliminary and await in situ verification, as well as a spatial multi-criteria analysis, before investment and development.