High precision isotopic study of atmospheric helium : volcanic and environmental applications

The helium isotopic composition of air (RA = 3He/4He = 1.39 × 10-6) is related to the natural and anthropogenic fluxes of 3He and 4He from the Earth (and from space for 3He). Industrial activities emit gases enriched in radiogenic 4He (exploitation of fossil fuels) and in 3He (nuclear activities). I...

Full description

Bibliographic Details
Main Author: Boucher, Christine
Other Authors: Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, Bernard Marty
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal.univ-lorraine.fr/tel-01906014
https://hal.univ-lorraine.fr/tel-01906014/document
https://hal.univ-lorraine.fr/tel-01906014/file/DDOC_T_2017_0194_BOUCHER.pdf
Description
Summary:The helium isotopic composition of air (RA = 3He/4He = 1.39 × 10-6) is related to the natural and anthropogenic fluxes of 3He and 4He from the Earth (and from space for 3He). Industrial activities emit gases enriched in radiogenic 4He (exploitation of fossil fuels) and in 3He (nuclear activities). It has been proposed that the 3He/4He ratio in air has varied over time and also spatially because of these helium fluxes. Such variations could allow the use of this ratio as a new tracer of anthropogenic and/or natural pollutants. To verify these possibilities, we undertook high-precision measurements of the composition of atmospheric helium (2-6‰, 2σ) at the Centre de Recherches Pétrographiques et Géochimiques (University of Lorraine, Centre National de Recherche Scientique, Vandoeuvre-lès-Nancy, France). We performed sample-standard bracketing analyses with a double collector Helix SFT Mass Spectrometer. During each of these analyses, several individual analyses of an air sample are conducted in alternation with an air standard. We found no evidence of temporal variation of the 3He/4He ratio in French air trapped in petanque balls (1965, 1990, 2010, 2013), metallic tanks (2010, 2016) and in a carburettor (1910). Including the measurements of Mabry et al. (2015) for the Cape Grim air archive (Tasmania, Australia), we obtained a trend of -0.05 ± 2.46‰ over 106 years. At the global level, we only detected two air samples out of sixteen (Dôme C-Antarctica, Tokyo-Japan) whose compositions are statistically distinct, marked by 3He excesses of 2.0 ± 1.4‰, and 1.7 ± 1.5‰, respectively (95% confidence interval). These excesses could be related to local and regional helium fluxes input such as: (i) auroral precipitation in Antarctica; (ii) volcanoes and/or nuclear releases (Fukushima Daï-Ichi) in Japan. In the Afar region (Ethiopia), we detected 3He excesses of ~1% above the lava lake of the Erta Ale volcano, which can be used to trace reactive gases (e.g. CO2) released simultaneously. These excesses are quickly affected by ...