Observation and simulation of surface temperature in Antartica : application in snow surface density estimation

The antarctic ice sheet is a key element in the climate system and an archive of past climate variations. However, given the scarcity of observations due to the geographical remoteness of Antarctica and its harsh conditions, little is known about the processes that control its mass balance and energ...

Full description

Bibliographic Details
Main Author: Fréville, Hélène
Other Authors: Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier - Toulouse III, Eric Brun, Ghislain Picard
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: HAL CCSD 2015
Subjects:
Online Access:https://theses.hal.science/tel-01512722
https://theses.hal.science/tel-01512722/document
https://theses.hal.science/tel-01512722/file/2015TOU30368.pdf
Description
Summary:The antarctic ice sheet is a key element in the climate system and an archive of past climate variations. However, given the scarcity of observations due to the geographical remoteness of Antarctica and its harsh conditions, little is known about the processes that control its mass balance and energy. In this context, several studies focus on the surface temperature which controls the snow temperature up to tens, if not hundreds, of meters beneath the surface. It also influences the thermal state of the antarctic ice sheet, its dynamics, and thus, its mass balance. Surface temperature is also directly linked to the surface energy balance through its impact on thermal and surface turbulent heat flux emissions. Thus, surface temperature analysis and the study of physical processes that control surface temperature variability contribute to the better understanding of the surface energy balance, which is a necessary step to identify the actual state of the antarctic ice sheet and forecast its impact on sea level rise. This thesis work contributes to this effort by focusing on the surface temperature diurnal cycle and various factors impacting spatial and temporal surface temperature variability on the Antarctic Plateau. First, an evaluation of MODIS data, done by comparison with in situ measurements, shows MODIS great potential in the observation of the surface temperature of the Antarctic Plateau under clear-sky conditions. Hourly MODIS surface temperature data from 2000 to 2011 were then used to evaluate the accuracy of snow surface temperature in the ERA-Interim reanalysis and the temperature produced by a stand-alone simulation with the Crocus snowpack model using ERA-Interim forcing. It reveals that ERA-Interim has a widespread warm bias on the Antarctic Plateau ranging from +3 to +6°C depending on the location. Afterwards, observations of the surface temperature diurnal cycle allow an identification of the surface density as a factor of surface temperature variability. On the topmost centimeters of the ...