For a better characterization of the fossil pelagic record : molecular, biogeographical and ecological diversity of planctonic foraminifers cryptic species

The usefulness of calcareous shells of planktonic foraminifera as a paleoceanographic proxy relies on the key hypothesis that each morphospecies corresponds to a biological species with a specific habitat. This empirical relationship has been challenged since molecular analyses have revealed a signi...

Full description

Bibliographic Details
Main Author: Morard, Raphaël
Other Authors: PaleoEnvironnements et PaleobioSphere (PEPS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard - Lyon I, Gilles Escarguel, Frédéric Quillévéré
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: HAL CCSD 2010
Subjects:
Online Access:https://theses.hal.science/tel-00708217
https://theses.hal.science/tel-00708217/document
https://theses.hal.science/tel-00708217/file/TH2010_Morard_Raphael.pdf
Description
Summary:The usefulness of calcareous shells of planktonic foraminifera as a paleoceanographic proxy relies on the key hypothesis that each morphospecies corresponds to a biological species with a specific habitat. This empirical relationship has been challenged since molecular analyses have revealed a significant level of cryptic genetic diversity among modern morphospecies of planktonic foraminifera. Previous workers have suggested that the cryptic species or genotypes (1) display narrower biogeographic and ecological ranges than their related morphospecies, and (2) exhibit shell morphological differences. In this work, we have characterized the genetic, morphological and ecological diversity among four planktonic foraminiferal morphospecies of significance in paleoceanography, i.e. Orbulina universa, Truncorotalia truncatulinoides, Globoconella inflata and Globigerina bulloides. Our study relies on the development of a new single-cell DNA extraction protocol that retains the shell, allowing direct morpho-genetic comparisons. Shape or porosity variations within each genotype have been quantified. It appears that the high degree of morphological plasticity widely documented in planktonic foraminifera and classically seen as ecophenotypy, is at least partly the spurious consequence of lumping several genotypes that display morphological and environmental preferences. Based on these observations, we developed several population-scale models, which allow recognition of the cryptic species based on their shell morphology. Finally, in order to quantify the impact of integrating cryptic diversity in assemblage-based aleoceanographic reconstructions, we have re-calibrated transfer functions based on the ecological ranges of the genotypes of O. universa, T. truncatulinoides, G. inflata and G. bulloides in the southern oceans. Such recalibrations led to a great, previously never reached improvement in the accuracy of the assemblage-based paleoceanographic reconstructions. L’utilisation des coquilles carbonatées de ...