Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer

International audience Volcanic long-period earthquakes are attributed to pressure fluctuations that result from unsteady mass transport in the plumbing system of volcanoes. Whereas most of the long-period seismicity is located close to the surface, the volcanic deep long-period earthquakes that occ...

Full description

Bibliographic Details
Published in:Nature Geoscience
Main Authors: Shapiro, N. M., Droznin, D. V., Droznina, S. Ya., Senyukov, S. L., Gusev, A. A., Gordeev, E. I.
Other Authors: Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://insu.hal.science/insu-03748851
https://doi.org/10.1038/ngeo2952
Description
Summary:International audience Volcanic long-period earthquakes are attributed to pressure fluctuations that result from unsteady mass transport in the plumbing system of volcanoes. Whereas most of the long-period seismicity is located close to the surface, the volcanic deep long-period earthquakes that occur in the lower crust and uppermost mantle reflect the activity in the deep parts of magmatic systems. Here, we present observations of long-period earthquakes that occurred in 2011-2012 within the Klyuchevskoy volcano group in Kamchatka, Russia. We show two distinct groups of long-period sources: events that occurred just below the active volcanoes, and deep long-period events at depths of ~30 km in the vicinity of a deep magmatic reservoir. We report systematic increases of the long-period seismicity levels prior to volcanic eruptions with the initial activation of the deep long-period sources that reflects pressurization of the deep reservoir and consequent transfer of the activity towards the surface. The relatively fast migration of the long-period activity suggests that a hydraulic connection is maintained between deep and shallow magmatic reservoirs. The reported observations provide evidence for the pre-eruptive reload of the shallow magmatic reservoirs from depth, and suggest that the deep long-period earthquakes could be used as a reliable early precursor of eruptions.