A Bayesian Approach for Thermal History Reconstruction in Basin Modeling

International audience We present a novel method for the joint inversion of thermal indicator data (vitrinite reflectance and apatite fission track) and additional data (bottom-hole temperature and porosity) for thermal history reconstruction in basin modeling. A transdimensional and hierarchical Ba...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Solid Earth
Main Authors: Licciardi, Andrea, Gallagher, Kerry, Clark, S. A.
Other Authors: Géosciences Rennes (GR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Sud ), Equinor Research
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://insu.hal.science/insu-02926818
https://insu.hal.science/insu-02926818/document
https://insu.hal.science/insu-02926818/file/Licciardi%20et%20al%20JGR2020JB019384%20Rpdf.pdf
https://doi.org/10.1029/2020JB019384
Description
Summary:International audience We present a novel method for the joint inversion of thermal indicator data (vitrinite reflectance and apatite fission track) and additional data (bottom-hole temperature and porosity) for thermal history reconstruction in basin modeling. A transdimensional and hierarchical Bayesian formulation is implemented with a reversible jump Markov chain Monte Carlo algorithm, with a 1-D transient thermal model. The objective of the inverse problem is to infer the heat flow history below a borehole given the data and a set of geological constraints (e.g., burial histories and physical properties of the sediments). The algorithm incorporates an adaptive, data-driven parametrization of the heat flow history, allows for automatic estimation of the relative importance of each data type and quantification of parameter uncertainties and trade-offs. Our approach deals with uncertainties on the imposed geological constraints in two ways. First, the amount of erosion and timing of an erosional event are treated as independent parameters. Second, uncertainties on compaction parameters and surface temperature history are directly propagated into the final solution. Synthetic tests show that porosity data can be used to reduce uncertainties on the amount of erosion. This work illustrates a truly probabilistic analysis of the trade-off between the magnitude of erosion and variations in heat flow histories which is key in basin modeling. The algorithm is then applied to real data from a well in the Barents Sea. Our algorithm can reconcile estimates of erosion from the thermal indicator and porosity data, which is a difficult and subjective task in basin modeling.