IAOOS microlidar development and firsts results obtained during 2014 and 2015 arctic drifts

International audience The development of a first ever autonomous aerosol and cloud backscatter lidar system for on-buoy arctic observations has been achieved in 2014, within the French EQUIPEX IAOOS project developed in collaboration with LOCEAN at UPMC. This development is part of a larger set-up...

Full description

Bibliographic Details
Published in:EPJ Web of Conferences
Main Authors: Mariage, Vincent, Pelon, Jacques, Blouzon, Frédéric, Victori, Stéphane
Other Authors: TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Division technique INSU/SDU (DTI), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Société Cimel Electronique
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://hal-insu.archives-ouvertes.fr/insu-01175931
https://hal-insu.archives-ouvertes.fr/insu-01175931/document
https://hal-insu.archives-ouvertes.fr/insu-01175931/file/ILRC27_final%20paper%20draft_Vincent_MARIAGE.pdf
https://doi.org/10.1051/epjconf/201611902005
Description
Summary:International audience The development of a first ever autonomous aerosol and cloud backscatter lidar system for on-buoy arctic observations has been achieved in 2014, within the French EQUIPEX IAOOS project developed in collaboration with LOCEAN at UPMC. This development is part of a larger set-up designed for integrated ocean-ice-atmosphere observations. First results have been obtained from spring to autumn 2014 after the system was installed at the North Pole at the Barneo Russian camp, and in winter-spring 2015 during the Norwegian campaign N-ICE 2015. The buoys were taking observations as drifting in the high arctic region where very few measurements have been made so far. This project required the design and the conception of an all-new lidar system to fit with the numerous constraints of such a deployment. We describe here the prototype and its performance. First analyzes are presented.