Modeling the date of leaf appearance in low-arctic tundra

International audience One of the reported changes of arctic ecosystems in response to warming climate is the advance of the leaf appearance in spring. Such phenological changes play a role in the structural changes within tundra ecosystem communities. Recently, we developed a model that estimates t...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Delbart, Nicolas, Picard, Ghislain
Other Authors: Centre for Medical Research, The University of Western Australia (UWA), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre for Terrestrial Carbon Dynamics Sheffield, University of Sheffield Sheffield
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2007
Subjects:
Online Access:https://insu.hal.science/insu-00375946
https://doi.org/10.1111/j.1365-2486.2007.01466.x
Description
Summary:International audience One of the reported changes of arctic ecosystems in response to warming climate is the advance of the leaf appearance in spring. Such phenological changes play a role in the structural changes within tundra ecosystem communities. Recently, we developed a model that estimates the leaf appearance date for deciduous trees in taiga. We apply this model to the whole low-arctic tundra, and we compare the simulated green-up dates with the green-up dates obtained from satellite observations and to in situ measurements of deciduous shrub leaf appearance. The model, although calibrated for taiga, performs remarkably well in tundra, with root mean square error ranging between 4 and 8 days for most of the tundra region, the same order as in taiga regions. The results seem to indicate that air temperature is the main factor controlling spring leaf phenology in tundra, just as in taiga, although these results do not permit us to reject soil temperature as the main trigger for leaf appearance in tundra. Because our model performs in tundra as well as in taiga, it can be used across the ecotone, and during a northward migration of the species from the taiga to the low-arctic region. The leaf appearance model and the satellite observations reveal that leaf appearance has tended to occur earlier by approximately 10 days both in Alaska since 1975, and in west Siberian tundra since 1965.