A recent decline in North Atlantic subtropical mode water formation

International audience As a manifestation of mixing dynamics in the upper ocean, interannual and decadal variability of subtropical mode water (STMW) properties in the North Atlantic Ocean provides a valuable insight into ocean–atmosphere interaction in a changing climate. Here, we use hydrographic...

Full description

Bibliographic Details
Published in:Nature Climate Change
Main Authors: Stevens, Samuel W., Johnson, Rodney J., Maze, Guillaume, Bates, Nicholas R.
Other Authors: Laboratoire d'Océanographie Physique et Spatiale (LOPS), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-04202544
https://doi.org/10.1038/s41558-020-0722-3
Description
Summary:International audience As a manifestation of mixing dynamics in the upper ocean, interannual and decadal variability of subtropical mode water (STMW) properties in the North Atlantic Ocean provides a valuable insight into ocean–atmosphere interaction in a changing climate. Here, we use hydrographic data from the Bermuda Atlantic Time-Series Study and Hydrostation S sites near Bermuda, as well as various ocean reanalysis products, to evaluate the modern variability of STMW properties. Our study finds an 86–93% loss of STMW thickness at these sites between 2010 and 2018 and a comparable loss throughout the western subtropical gyre, culminating in the weakest STMW pentad on record. We correlate this decline with a reduction in the annual outcropping volume and northward excursions of the formation region, suggesting a gyre-wide signal of weakening STMW generation. The outcropping volume of STMW is anti-correlated with surface ocean heat content, foreshadowing future STMW loss in the face of continued warming.