Debris-covered glacier systems and associated glacial lake outburst flood hazards : challenges and prospects

Glaciers respond sensitively to climate variability and change, with associated impacts on meltwater production, sea-level rise and geomorphological hazards. There is a strong societal interest in understanding the current response of all types of glacier systems to climate change and how they will...

Full description

Bibliographic Details
Published in:Journal of the Geological Society
Main Authors: Racoviteanu, Adina, Nicholson, L., Glasser, N.F., Miles, E., Harrison, S., Reynolds, J.M.
Other Authors: Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.science/hal-04010859
https://doi.org/10.1144/jgs2021-084
Description
Summary:Glaciers respond sensitively to climate variability and change, with associated impacts on meltwater production, sea-level rise and geomorphological hazards. There is a strong societal interest in understanding the current response of all types of glacier systems to climate change and how they will continue to evolve in the context of the whole glacierized landscape. In particular, understanding the current and future behaviour of debris-covered glaciers is a 'hot topic' in glaciological research because of concerns for water resources and glacier-related hazards. The state of these glaciers is closely related to various hazardous geomorphological processes which are relatively poorly understood. Understanding the implications of debris-covered glacier evolution requires a systems approach. This includes the interplay of various factors such as local geomorphology, ice ablation patterns, debris characteristics and glacier lake growth and development. Such a broader, contextualized understanding is prerequisite to identifying and monitoring the geohazards and hydrologic implications associated with changes in the debris-covered glacier system under future climate scenarios. This paper presents a comprehensive review of current knowledge of the debris-covered glacier landsystem. Specifically, we review state-of-the-art field-based and the remote sensing-based methods for monitoring debris-covered glacier characteristics and lakes and their evolution under future climate change. We advocate a holistic process-based framework for assessing hazards associated with moraine-dammed glacio-terminal lakes that are a projected end-member state for many debris-covered glaciers under a warming climate