Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification

International audience Evaluating the factors responsible for differing species-specific sensitivities to declining seawater pH is central to understanding the mechanisms via which ocean acidification (OA) affects coral calcification. We report here the results of an experiment comparing the respons...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Comeau, S, Cornwall, C, Mcculloch, M
Other Authors: Laboratoire d'océanographie de Villefranche (LOV), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal.science/hal-03955652
https://hal.science/hal-03955652/document
https://hal.science/hal-03955652/file/s41598-017-08003-z.pdf
https://doi.org/10.1038/s41598-017-08003-z
Description
Summary:International audience Evaluating the factors responsible for differing species-specific sensitivities to declining seawater pH is central to understanding the mechanisms via which ocean acidification (OA) affects coral calcification. We report here the results of an experiment comparing the responses of the coral Acropora yongei and Pocillopora damicornis to differing pH levels (8.09, 7.81, and 7.63) over an 8-week period. Calcification of A. youngei was reduced by 35% at pH 7.63, while calcification of P. damicornis was unaffected. The pH in the calcifying fluid (pH cf) was determined using δ 11 B systematics, and for both species pH cf declined slightly with seawater pH, with the decrease being more pronounced in P. damicornis. The dissolved inorganic carbon concentration at the site of calcification (DIC cf) was estimated using geochemical proxies (B/Ca and δ 11 B) and found to be double that of seawater DIC, and increased in both species as seawater pH decreased. As a consequence, the decline of the saturation state at the site of calcification (Ω cf) with OA was partially moderated by the DIC cf increase. These results highlight that while pH cf , DIC cf and Ω cf are important in the mineralization process, some corals are able to maintain their calcification rates despite shifts in their calcifying fluid carbonate chemistry.